Electronic Supplementary Information

The first ternary Nd-MOF/GO/Fe₃O₄ nanocomposite exhibiting excellent photocatalytic performance for dye degradation

Yu-ting Bai,^a Shuo Zhang,^a Si-si Feng,^{*b,c} Miao-li Zhu^{*a,b} and Shengqian Ma^{*c}

a Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering

of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.

^bKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi

University, Taiyuan, Shanxi, 030006, P. R. China.

^cDepartment of Chemistry, University of South Florida, 4202 Easter Fowler Avenue, Tampa,

Florida 33620, United States

E-mail addresses: <u>ssfeng@sxu.edu.cn</u> (S. Feng), <u>miaoli@sxu.edu.cn</u> (M. Zhu), <u>sqma@usf.edu</u> (S. Ma).

Tel: ++86-351-7017974;

Fax: ++86-351-7011022.

^{*} Corresponding Authors.

Table S1. Selected bond lengths (Å) and angles (°) for MOF-1.							
Nd1—O6 ⁱ	2.328 (3)	Nd1—O9 ^{iv}	2.453 (3)	Nd1—O4	2.536 (3)		
Nd1—O5 ⁱⁱ	2.382 (3)	Nd1—O10	2.458 (7)	Nd1—O11	2.537 (6)		
Nd1—O7 ⁱⁱⁱ	2.409 (3)	Nd1—O4 ^v	2.473 (3)	Nd1—O8 ^{iv}	2.646 (3)		
O6 ⁱ —Nd1—O5 ⁱⁱ	165.26 (11)	O6 ⁱ —Nd1—O9 ^{iv}	121.43(12)	O6 ⁱ —Nd1—O10	106.01 (19)		
O6 ⁱ —Nd1—O7 ⁱⁱⁱ	89.86 (10)	O5 ⁱⁱ —Nd1—O9 ^{iv}	71.43 (11)	O5 ⁱⁱ —Nd1—O10	85.51 (18)		
O5 ⁱⁱ —Nd1—O7 ⁱⁱⁱ	85.25 (10)	O7 ⁱⁱⁱ —Nd1—O9 ^{iv}	131.44 (15)	O7 ⁱⁱⁱ —Nd1—O10	70.82 (17)		
O9 ^{iv} —Nd1—O10	65.5 (2)	O7 ⁱⁱⁱ —Nd1—O4 ^v	139.65 (9)	O5 ⁱⁱ —Nd1—O4	82.39 (9)		
O6 ⁱ —Nd1—O4 ^v	84.42 (10)	O9 ^{iv} —Nd1—O4 ^v	83.84 (15)	O7 ⁱⁱⁱ —Nd1—O4	73.92 (9)		
O5 ⁱⁱ —Nd1—O4 ^v	90.32 (9)	O6 ⁱ —Nd1—O4	82.90 (10)	O9 ^{iv} —Nd1—O4	139.64 (14)		
O10—Nd1—O4	143.48 (17)	O5ii—Nd1—O11	112.85 (19)	O4v—Nd1—O11	146.95 (17)		
O4 ^v —Nd1—O4	65.75 (10)	07 ⁱⁱⁱ —Nd1—O11	68.59 (17)	O4—Nd1—O11	137.57 (17)		
O6 ⁱ —Nd1—O11	77.95 (19)	O9 ^{iv} —Nd1—O11	81.9 (2)	O6 ⁱ —Nd1—O8 ^{iv}	71.63 (11)		
O5 ⁱⁱ —Nd1—O8 ^{iv}	120.90 (10)	O9 ^{iv} —Nd1—O8 ⁱ v	49.81 (12)	O4—Nd1—O8 ^{iv}	138.21 (11)		
O7 ⁱⁱⁱ —Nd1—O8 ^{iv}	136.37 (11)	O4v—Nd1—O8 ^{iv}	79.00 (11)	O11—Nd1—O8 ^{iv}	69.03 (18)		

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) x+1, y+1, z-1; (v) -x+2, -y+1, -z+1; (vi) x-1, y-1, z+1.

Fig. S1 The PXRD patterns of MOF-1 (calculation and experiment) at room temperature.

Fig. S2 TGA and DTA plots of MOF-1.

Fig. S3 N_2 adsorption-desorption isotherms and pore-size distribution curve (the inset) of MOF-1/GO/Fe₃O₄ nanocomposite.

Fig. S4 Photocatalytic degradation of methylene blue (MB), Rhodamine B (RhB), Methyl orange (MO) as a function of irradiation time forMOF-1/GO/Fe₃O₄.

Table S2. A summary of recent MOFs-based hybrid nanocomposite

photocatalysts for dye degradation						
Cataiysts	Dyes	Catalysts	Dyes usage/	The rate constants	Ref	
	usage (mg)	usage (mg)	catalysts usage	(min ⁻¹)		
BiVO ₄ /MIL-53(Fe)/GO	1.5 (RhB)	10	15/100	0.01811	1	
M88/GO	0.5 (RhB)	20	2.5/100	0.0645	2	
NH2-MIL-53(Al)/RGO	2.1 (MB)	10	21/100	0.0039	3	
Ag/rGO/MIL-125(Ti)	5 (RhB)	40	12.5/100	0.0644	4	
GR/MIL-53(Fe)	0.5 (RhB)	10	5/100	0.07772	5	
MIL-53(Fe)-rGO	3 (MB)	100	3/100	0.0285	6	
MOF-1/GO/Fe ₃ O ₄	0.15 (MB)	2	7.5/100	0.03788	This work	

Fig. S6 PXRD patterns (a) and FTIR spectra (b) of **MOF-1**/GO/Fe₃O₄ before and after the photocatalytic reaction.

pH	iron concentration (mg/L)	MOF-1 /GO/Fe ₃ O ₄ concentration		
		(mg/L)		
3	2.166	133		
5	0.221	133		

Table S3. The concentration of iron during the reaction

Fig. S7 Liquid chromatography of MB aqueous solution without the catalyst (a). Mass spectrum corresponding to the MB aqueous solution without the catalyst at a retention time of 6.25 min in liquid chromatography (b). Liquid chromatography after photocatalytic degradation of MB aqueous solution by MOF-1/GO/Fe₃O₄ (c). Liquid chromatography of distilled water (d).

References

- S1. Y. Chen, B. Zhai and Y. Liang, *Diam. Relat. Mat.*, 2019, **98**, 107508.
- S2. N. Liu, W. Huang, X. Zhang, L. Tang, L. Wang, Y. Wang and M. Wu, *Appl. Catal. B: Environ*, 2018, 221, 119-128.
- S3. Y. Yang, W. Wang, H. Li, X. Jin, H. Wang, L. Zhang and Y. Zhang, *Mater. Lett*, 2017, **197**, 17-20.
- S4. X. Yuan, H. Wang, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu and H. Li, *Appl. Organmet. Chem*, 2016, 30, 289-296.
- S5. C. Zhang, L. Ai and J. Jiang, *Ind. Eng. Chem. Res*, 2014, **54**, 153-163.
- S6. Y. Zhang, G. Li, H. Lu, Q. Lv and Z. Sun, *RSC Adv*, 2014, **4**, 7594.