Supplementary Information for

Polypyrrole Coated δ-MnO₂ Nanosheet Arrays as Highly Stable Lithium-ion-storage Anode

Yiming Sui,^{1,2} Chaofeng Liu,¹ Peichao Zou,² Houchao Zhan,² Yuanzheng Cui,² Cheng Yang,^{2,*}

Guozhong Cao^{1,*}

¹Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

²Division of Energy and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Email: Cheng Yang: yang.cheng@shenzhen.tsinghua.edu.cn, Guozhong Cao: gzcao@uw.edu

Figure S1. XRD pattern of decomposition products of KMnO₄.

Figure S2. EDS pattern of decomposition products of KMnO₄.

Figure S3. Chronoamperometric graph of PPy electrodeposition at the potential of 1.2 V (vs. Ag/AgCl) which could be divided into two stages and two separate curves.

Figure S4. SEM image of bare nickel foam at the scale bar of 200 $\mu m.$

Figure S5. SEM image of MnO_2@PPy/NF-50 at the scale bar of 200 $\mu m.$

Figure S6. SEM image of MnO₂@PPy/NF-50 at the scale bar of 1 μ m.

Figure S7. Electrochemical impedance spectra of the $MnO_2@PPy/NF-50$ electrodes in the frequency range of 100 kHz – 0.01 Hz.

Figure S8. Rate capacities of MnO₂@PPy/NF-50 electrodes at various current densities.

Figure S9. Cycling performance of the MnO₂@PPy/NF-50 electrodes at the current density of 0.42 A g⁻¹.