Supporting Information

Monitoring inorganic pyrophosphatase activity with a fluorescent

dizinc(II) complex of a macrocycle bearing one dansylamidoethyl antenna

Ana Cruz,^a Ara Núñez-Montenegro,^a Pedro Mateus^{*a} and Rita Delgado^{*a}

[†] Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780–157 Oeiras, Portugal.

Page Contents Fig. S1 Titrations of L with $Zn(NO_3)_2$ followed by absorption (a) and S2 fluorescence emission (b) spectra. λ_{exc} = 330 nm; at pH 7.5 in 2 mM PIPPS aqueous solution Fig. S2 Fluorescence intensity change of L alone, and in presence of 2 equiv. of S2 metal ions; and fluorescence intensity change of $[Zn_2H_1L]^{3+}$ upon addition of 5 equiv. of different anions Fig. S3 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ **S**3 with Pi; and experimental and calculated values for the binding study of receptor $[Zn_2H_1L]^{3+}$ in function of Pi Fig. S4 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_{-1}L]^{3+}$ **S**3 with PPh; and experimental and calculated values for the binding study of receptor $[Zn_2H_1L]^{3+}$ in function of PPh Fig. S5 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ S4 with AMP; and experimental and calculated values for the binding study of receptor $[Zn_2H_1L]^{3+}$ in function of AMP Fig. S6 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ S4 with ADP; and experimental and calculated values for the binding study of receptor $[Zn_2H_{-1}L]^{3+}$ in function of ADP Fig. S7 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ **S**5 with ATP; and experimental and calculated values for the binding study of receptor $[Zn_2H_1L]^{3+}$ in function of ATP Fig. S8 Fluorescence spectra recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ S5 with PPi; and experimental and calculated values for the binding study of receptor $[Zn_2H_{-1}L]^{3+}$ in function of PPi Fig. S9 Atom labelling of the dialdehyde intermediate **3** for NMR assignment. **S6 Fig. S10** ¹H NMR spectrum of the dialdehyde intermediate **3** in CDCl₃ **S6 Fig. S11** ¹³C NMR spectrum of the dialdehyde intermediate **3** in CDCl₃. **S**7 **Fig. S12** Atom labelling of L.6TFA for NMR assignment. **S**7 **Fig. S13** ¹H NMR spectrum of L.6TFA in D₂O **S**8 **Fig. S14** ¹³C NMR spectrum of L.6TFA in D₂O **S**8 **Fig. S15** HPLC profile of L.6TFA **S9 Fig. S16** HRMS mass spectrum of L.6TFA in H₂O S10

Fig. S1 Titrations of L with $Zn(NO_3)_2$ aqueous solutions, followed by absorption (**a**) and fluorescence emission (**b**) spectra. Blue and red spectra correspond to 0 and 5.0 equiv. of Zn^{2+} , respectively); $C_L = 10 \ \mu M$ (absorption) and 75 μM (fluorescence), at pH 7.5, in 2 mM PIPPS aqueous solution ($\lambda_{exc} = 330 \ nm$; exc. slit = 5 nm; em. slit 5 nm).

Fig. S2 Fluorescence intensity change (**a**) of **L** alone, and in presence of 2 equiv. of metal ions, Zn^{2+} , Cu^{2+} , Na^+ , Mg^{2+} and Ca^{2+} , respectively; then to the $[Zn_2H_{-1}L]^{3+}$ complex was added 1000 equiv. of Na⁺, Mg^{2+} and Ca^{2+} cations, respectively. Fluorescence intensity change (**b**) of $[Zn_2H_{-1}L]^{3+}$ (blue) upon addition of 5 equiv. of each anion (red bars), and then to these solutions were added 5 equiv. of HPPi³⁻ (hatched bars). At 510 nm, C_L = 10 µM aqueous solution at pH 7.5 (2 mM PiPPs); T = 298.2 K; $\lambda_{exc} = 330$ nm; exc. slit = 5 nm; em. slit 5 nm.

Fig. S3 Fluorescence spectra (**a**) recorded in the course of the titration of $[Zn_2H_{-1}L]^{3+}$ (2.0×10⁻⁵ M) with HPO₄²⁻ anion; and experimental (**■**) and calculated values (red solid line) for the binding study of $[Zn_2H_{-1}L]^{3+}$ receptor in function o HPO₄²⁻ (**b**). The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K; $\lambda =$ 512 nm, log $K_{app} = 3.81$; exc. slit = 5 nm; em. slit 5 nm.

Fig. S4 Fluorescence spectra (**a**) recorded along the titration of $[Zn_2H_{-1}L]^{3+}$ (2.0×10⁻⁵ M) with PPh²⁻ anion, and experimental (**■**) and calculated values (red solid line) for the binding study of $[Zn_2H_{-1}L]^{3+}$ receptor in function of PPh²⁻ anion (**b**). The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K; $\lambda = 512$ nm; log $K_{app} = 4.20$; exc. slit = 5 nm; em. slit 5 nm.

Fig. S5 Fluorescence spectra (**a**) recorded in the course of the titration of $[Zn_2H_1L]^{3+}$ (2.0×10⁻⁵ M) with HAMP⁻ anion, and experimental (**■**) and calculated values (red solid line) for the binding study of receptor $[Zn_2H_1L]^{3+}$ in function of AMP anion (**b**). The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K, $\lambda = 512$ nm, log $K_{app} = 4.78$, exc. slit = 5 nm; em. slit 5 nm.

Fig. S6 Fluorescence spectra (**a**) recorded in the course of the titration of $[Zn_2H_{-1}L]^{3+}$ (2.0×10⁻⁵ M) with HADP²⁻ anion; and experimental (**■**) and calculated values (red solid line) for the binding study of receptor $[Zn_2H_{-1}L]^{3+}$ in function of. HADP²⁻ (**b**) anion. The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K, $\lambda = 512$ nm, log $K_{app} = 4.95$, exc. slit = 5 nm; em. slit 5 nm.

Fig. S7 Fluorescence spectra (**a**) recorded in the course of the titration of $[Zn_2H_{-1}L]^{3+}$ (2.0×10⁻⁵ M) with HATP³⁻ anion; experimental (**■**) and calculated values (red solid line) for the binding study of receptor $[Zn_2H_{-1}L]^{3+}$ in function of HATP³⁻ anion (**b**). The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K; $\lambda =$ 512 nm, log $K_{app} = 5.24$, exc. slit = 5 nm; emission slit 5 nm.

Fig. S8 Fluorescence spectra (**a**) recorded in the course of the titration of $[Zn_2H_{.1}L]^{3+}$ (2.0×10⁻⁵ M) with HPPi³⁻ anion, and experimental (**■**) and calculated values (red solid line) for the binding study of receptor $[Zn_2H_{.1}L]^{3+}$ in function of HPPi³⁻ anion (**b**). The titration was performed in aqueous solution buffered with PIPPS (2 mM) at pH 7.5 and T = 298.2 K; $\lambda = 512$ nm, log $K_{app} = 5.57$, exc. slit = 5 nm; emission slit 5 nm.

Fig. S9 Atom labelling of the dialdehyde intermediate 3 for NMR assignment.

Fig. S10 ¹H NMR spectrum of the dialdehyde intermediate 3 in CDCl₃.

Fig. S11 ¹³C NMR spectrum of the dialdehyde intermediate 3 in CDCl₃.

Fig. S12 Atom labelling of L.6TFA for NMR assignment.

Fig. S14 13 C NMR spectrum of L.6TFA in D₂O.

PCM/15xx Ins	strument Setup
Туре	PCM/15xx
Instrument Status	On
Pump Mode	Gradient
Flow A	1.00
Flow B	0.00
Flow C	0.00
High Limit	2500.0
Low Limit	0.0
Total Flow	1.00
Use Events	Off
Solvent A	0.1% TFA
Solvent B	90% MeCN:10%H2O:0.1%TF
Solvent C	

PCM/15xx Gradient Table	Э
-------------------------	---

	Time	Flow	%A	%В	%C	Curve
1		1.00	100.0	0.0	0.0	
2	2.00	1.00	100.0	0.0	0.0	6
3	22.00	1.00	0.0	100.0	0.0	6
4	24.00	1.00	100.0	0.0	0.0	6
5	30.00	1.00	100.0	0.0	0.0	6

Fig. S16 HRMS mass spectrum of L.6TFA in H_2O .