Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

pH-sensitive subphthalocyanines and subazaphthalocyanines

Ivan A. Skvortsov,^{a, b} Petr Zimcik,^b Pavel A. Stuzhin,^a* Veronika Novakova^b*

^a Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, Sheremetevsky Avenue 7, Ivanovo RF-153000, Russia

^b Faculty of Pharmacy in Hradec Kralove, Charles University, Ak. Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic

Content

Switching studies in acetone	. S2
Decomposition studies	. S3
NMR spectra	. S4

Switching studies in acetone

Fig. S1: Changes in absorption spectra and fluorescence emission spectra upon addition of TFA, and dependence of Φ_F of **1a-3a** (c = 1 μ M) in acetone on the concentration of TFA. The solid lines in graphs on the right side represent the least-square fits to the experimental points.

Fig. S2: Dependence of Φ_F of **1a-3a** and **1c-3c** (c = 1 μ M) in acetone on the concentration of TFA. The solid lines for **1a-3a** represent the least-square fits to the experimental points, for **1c-3c** represent connecting lines.

Decomposition studies

Fig. S3: Changes in absorption spectra of SubPyzPzs **1a** and **1c** (in acetone or N-methyl-2-pyrrolidone (NMP), $c = 1 \mu M$) upon addition of a base (1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) or tetrabutylammonium hydroxide (tbaOH).

Fig. S4: Changes in absorption spectra of SubPcs and SubPyzPzs (in acetone, $c = 1 \mu M$) upon addition of 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU).

Fig. S5: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **1a** in CDCl₃. Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and acetone, respectively.

Fig. S6: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **1b** in CDCl₃. Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and acetone, respectively.

Fig. S7: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **1c** in CDCl₃. Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and acetone, respectively.

Fig. S8: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **2a** in THF- d_8 . Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and water, respectively.

Fig. S9: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **2b** in THF- d_8 . Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and water, respectively.

Fig. S10: ¹H NMR (500 MHz) (a) and ¹³C NMR (126 MHz) (b) spectra of compound **2c** in THF- d_8 . Asterisk (*) and triangle (\blacktriangle) indicate residuals of non-deuterated solvent and water, respectively.