Energy Transfer in Supramolecular [Crypt-RE]-[W₆I₁₄] Solids

Thorsten Hummel[†], Wolfgang Leis[‡], Aaron Eckhardt[†], Markus Ströbele[†], David Enseling^{*}, Thomas Jüstel^{*}, Hans-Jürgen Meyer[†]*

 * Section for Solid State and Theoretical Inorganic Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

‡ Section for Translational Chemistry, Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

✤ Department of Chemical Engineering, Münster University of Applied Science, Stegerwaldstraße 39, 48565 Steinfurt, Germany.

Table S1. Single crystal structure refinement data for (1)K, (1)Rb, (1)Cs, (1)Sr, and (2)Na

Compound	(1)K	(1)Rb	(1)Cs	(1)Sr	(2)Na
Empirical formula	$[\{C_{18}H_{36}N_2O_6\}K]_2[W_6I_{14}]$	$[\{C_{18}H_{36}N_2O_6\}Rb]_2[W_6I_{14}]$	$[\{C_{18}H_{36}N_2O_6\}Cs]_2[W_6I_{14}]$	$[\{C_{18}H_{36}N_2O_6\}Sr][W_6I_{14}]$	$[\{C_{24}H_{35}N_4O_4\}Na]_2[W_6I_{14}]$
CSD	1937039	1937051	1937550	1937593	1937034
Exact formula	$[\{C_{18}H_{36}N_2O_6\}K]_2[W_6I_{14}]\\ \cdot 2\ C_3H_6O$	$\begin{array}{l} [\{C_{18}H_{36}N_2O_6\}Rb]_2[W_6I_{14}] \\ \cdot \ 0.5\ C_4H_{12}O_2S_2 \end{array}$	$[\{C_{18}H_{36}N_2O_6\}Cs]_2[W_6I_{14}]\\ \cdot 0.82\ C_3H_6O \cdot 0.58\ H_2O$	$\begin{array}{l} [\{C_{18}H_{36}N_2O_6\}(H_2O)(C_3H_7NO)Sr][W_6I_{14}]\\ \cdot\ 2\ C_3H_7NO\ \cdot\ 0.701\ C_3H_7NO\\ \cdot\ 0.299\ H_3CCN \end{array}$	$[\{C_{24}H_{35}N_4O_4\}Na]_2[W6I14]$
Formula weight	3826.97	3881.68	3956.52	3643.94	3810.78
Temperature / K	100(2)	100(2)	293(2)	100(2)	100(2)
Wavelength / Å	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	рl	рl	рl	P 2 ₁ 2 ₁ 2 ₁	<i>p</i> 1
Unit cell dimensions					
a /Å	16.2061(6)	10.863(1)	14.8492(4)	17.4169(5)	11.5824(2)
<i>b</i> / Å	16.5636(6)	13.777(2)	15.1634(5)	19.2144(6)	11.7282(2)
c/Å	17.6306(6)	13.879(2)	22.2020(8)	20.5070(7)	14.5135(3)
α/°	72.864(2)	74.868(5)	72.954(3)		106.396(1)
β/°	66.933(2)	85.696(5)	87.373(3)		91.055(1)
y / °	68.017(1)	79.503(5)	59.816(2)		95.029(1)
Volume / Å3	3976.5(3)	1970.7(4)	4100.2(2)	6862.8(4)	1882.15(6)
Ζ	2	1	2	4	1
Density (calculated) / g·cm ⁻³	3.196	3.271	3.205	3.527	3.362
Absorption coefficient / mm-1	14.233	15.504	14.574	17.128	14.933
F(000)	3398	1714	3480	6377	1684
Crystal size / mm3	0.14 x 0.13 x 0.11	0.259 x 0.084 x 0.055	0.170 x 0.06 x 0.06	0.022 x 0.02 x 0.02	
Theta range for data collection / $^{\circ}$	1.650 to 25.026	1.880 to 27.769	2.690 to 25.500	1.865 to 27.103	1.767 to 27.501
Index ranges	-19 $\leq h \leq$ 19, -19 $\leq k \leq$ 19, -20 \leq 1 \leq 20	$\text{-}14 \leq h \leq 14, \text{-}17 \leq k \leq 17, \text{-}18 \leq l \leq 18$	-17 $\leq h \leq$ 17, -18 $\leq k \leq$ 18, -26 \leq 1 \leq 26	-21 \leq h \leq 22, -24 \leq k \leq 24, -26 \leq 1 \leq 26	-15<=h<=15, -15<=k<=15, -18<=l<=18
Reflections collected	59772	65904	17545	51859	88555
Independent reflections	14000 [R(int) = 0.0285]	9207 [R(int) = 0.0171]	7542 [R(int) = 0.0753]	15131 [R(int) = 0.0237]	8601 [R(int) = 0.0224]
Completeness to theta = $25.242^{\circ} / \%$	99.7	99.9	48.7	99.9	100.0
Absorption correction	Semi-empirical from equivalents	Numerical	Numerical	Numerical	Numerical
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F2	Full-matrix least-squares on F ²
Data / restraints / parameters	14000 / 0 / 743	9207 / 0 / 370	7542 / 246 / 649	15131 / 0 / 597	8601 / 6 / 490
Goodness-of-fit on F2	1.010	1.095	1.047	1.033	1.045
Final R indices [I>2sigma(I)]	$R_1 = 0.0219, wR_2 = 0.0393$	$R_1 = 0.0123, wR_2 = 0.0245$	$R_1 = 0.0477, wR_2 = 0.1052$	$R_1 = 0.0193, wR_2 = 0.0409$	$R_1 = 0.0150, wR_2 = 0.0316$
R indices (all data)	$R_1 = 0.0367, wR_2 = 0.0430$	$R_1 = 0.0140, wR_2 = 0.0249$	$R_1 = 0.0769, wR_2 = 0.1204$	$R_1 = 0.0212, wR_2 = 0.0416$	$R_1 = 0.0176, wR_2 = 0.0323$
Largest diff. peak and hole / e-A-3	1.050 and -0.896	0.777 and -0.651	1.072 and -1.056	1.900 and -1.268	0.743 and -1.413

•

Table S2. Single crystal structure refinement data for (3)Nd·DMSO, (3)Yb·DMSO and (3)Lu·DMSO

Compound	(3)Nd·DMSO	(3)Yb·DMSO	(3)Lu·DMSO	

Figure S1. Layered structure arrangement in $[\{C_{18}H_{36}N_2O_6\}A]_2[W_6I_{14}]$ (1)*A* on the example of *A* = K, (top) and *A* = Rb (bottom). Only the centers of gravity of $\{C_{18}H_{36}N_2O_6\}A]^+$ represented by the alkaline ion (grey spheres for K and red spheres for Rb) and the center of gravity of the $[W_6I_{14}]^2$ -cluster ions (white spheres) are shown for clarity.

Figure S2. Light microscopy image of (1)Cs single crystals (left) and (1)K (right).

Figure S3. X-ray powder diffraction patters of the product from the reaction of $[\{C_{36}H_{26}D_4N_8O_2\}RE\cdotCl]Cl_2$ with $Cs_2[W_6I_{14}]$. As the amount of solvents incorporated in the single crystals differ, the powder patterns are not expected to be in good agreement. Powder measurements of the supposed **(3)***RE*•Cl do show the same pattern for *RE* = Yb and Lu. In red Bragg positions and intensities of the reference compounds $[\{C_{36}H_{26}D_4N_8O_2\}RE\cdotDMSO]_2[W_6I_{14}]_3$ obtained from single crystal data are shown.

Table S3. Energy-dispersive X-ray spectroscopy measurement of products resulting from the reaction of $Cs_2[W_6I_{14}]$ with $[\{C_{36}H_{26}D_4N_8O_2\}RE\cdot Cl]Cl_2$ with RE = Nd, Lu, Yb. Results are normalized to six tungsten atoms of $[W_6I_{14}]^{2-}$.

Element	Measured composition for (3)Lu-Cl	Measured composition for (3)Nd-Cl	Measured composition for (3)Yb·Cl
W	6	6	6
Ι	12.27 ± 2.67	13.78 ± 1.50	7.90 ± 1.76
RE	0.97 ± 0.06	0.95 ± 0.10	0.98 ± 0.10
Cl	0.92 ± 0.17	1.09 ± 0.29	1.07 ± 0.19

Figure S4. Decay measurements of (1)A with A = Na, K, Rb, Cs.

Figure S5. Maximum normalized emission spectra of solid (1)Cs (A, room temperature) and $Cs_2[W_6I_{14}]$ (B, 100 K) displaying the $[W_6I_{14}]^{2-}$ emission upon excitation the cluster anion at 430 nm and 470 nm respectively. Excitation spectra are recorded by monitoring the 690 nm and 685 nm emission of $[W_6I_{14}]^{2-}$.

Figure S6. Maximum normalized emission spectra of solid (3)Lu·Cl (A, 77 K) and (PPN)₂[W₆I₁₄] (B, 105 K) displaying the $[W_6I_{14}]^{2-}$ emission upon excitation the cluster anion at 420 nm and 410 nm respectively. Excitation spectra are recorded by monitoring the 670 nm and 700 nm emission of $[W_6I_{14}]^{2-}$.