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S1. Materials and methods
Raw Materials

Chitosan, 4-ethylnitrobenzene was purchased from TCI Chemicals, India. Hydrochloric
acid (HCI; 35.4%), 4-chloronitrobenzene, Nitrobenzene were purchased from S. D. Fine
Chemicals, India. 4-methyl nitrobenzene, 4-nitroaniline were purchased from SRL, India. 4-
cyanonitrobenzonitrile, 4-nitrobenzensulfonamide, 1-nitronaphthalene, 1,4-dinitrobenzene, 4-
nitrobenzaldehyde, 5-nitroindole and 4-chloro-B-nitrostyrene were obtained from Sigma-

Aldrich. All the reagents were used without any further purification.
Material Characterizations

The structural characterization studies of the catalyst were carried out by different
physiochemical methods. The PXRD analysis was carried out using Philips X’pert MPD
system for powder X-ray Diffractometer. The black powder obtained was scanned in the range
of 10-80° using CuKo radiation of 1.54056 A wavelength with a Ni filter. A Perkin-Elmer GX
spectrophotometer was used for the Fourier-transform infrared spectrophotometry (FTIR)
spectra using KBr pellets in the wavelength range of 400-4000 cm!. The total concentration of
metal was determined by inductively coupled plasma optical emission spectrometry (ICP-OES)
(Perkin Elmer, Optima 2000) by completely digesting the material in aqua regia. The
reducibility of the precursor was analyzed by the temperature programmed reduction (TPR),
and the total basicity of the catalyst was evaluated by temperature programmed desorption
(TPD) using Micromeritics Analyzer, AutoChem-II 2920 with a continuous flow system. The
sample was subjected to thermal activation under helium at 250 °C for 4 h. The stabilization of
the sample was done under 10% of H,/Ar, and the TPR profiles were obtained by heating at
the rate of 10 °C min’! from room temperature to 400 °C. The saturation was obtained by using
a mixture of 10% CO,/He and the TPD profile was obtained by heating at a rate of 10 °C min-
! from 90 °C to 800 °C.Raman spectroscopic analysis of the catalyst was done with 532 nm
argon source laser excitation with 10 mW power in the range of 1000-2000 cm-!. The energy
dispersive X-ray (EDX) mapping and morphology of the catalyst was determined using a JEOL
JSM 7100F field emission scanning electron microscope (FE-SEM). The synthesized catalyst
was dispersed in isopropyl alcohol by sonication and was drop casted on a brass stub. The stub
was dried under vacuum and used for analysis. Transmission electron microscope (TEM)
(JEOL JEM 2100) was used to analyse the size and shape of the particles and recording the
selected area electron diffraction (SAED) of the sample. The samples were loaded on the TEM
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grid by dispersing it in isopropyl alcohol using ultrasonicator and then drop casting the
suspension on the TEM grid. This drop casted grid was dried in a vacuum oven prior to
analysis. X-ray photoelectron spectroscopy (XPS) was performed using an ESCA+ (Omicron
Nanotechnology, Germany) with a monochromatized Al-Ka X-ray (hv = 1486.7 eV) as the
excitation source (15 kV and 20 mA). The pass energy for the survey spectrum was 50 eV and
20 eV in case of the short scan. The sample was placed on the copper tape and degassed in the
XPS FEL chamber to minimize the air contamination. A charge neutralizer of 2 keV was used
to overcome any charging problem, and the calibration was done using the adventitious Cls
feature at 284.6 eV as a reference. All the spectra’s were recorded at 90° of the X-ray source.
The 'H and 13C spectra were recorded on Bruker, Avance II (600MHz). The NMR Chemical
shifts were recorded in CDCl; or DMSO-dg solutions referenced to tetramethylsilane (TMS)
(0.00 ppm) or CDCl; (7.26 ppm) and DMSO- ds (2.50 ppm) for 'H NMR and CDCl; (77 ppm)
and DMSO- dg (39.5 ppm) for 3C NMR.

Product Analysis

The products were analyzed by gas chromatography (Agilent GC 7890B) equipped with HP-5
capillary column of 30 m x 0.250 mm x 0.25 pm dimension and a FID detector and GC-MS
(Shimadzu, GC-MS QP 2010, Japan). The reproducibility of the results was ensured by
repeated experiments under identical conditions and was found to be consistent with + 5%

variation.



GC-MS data for the products

NH,
. Ly

%
13 103 117 130 143 156 071 08 XS XN M N5 M0 O RENS N4 AN 0 W W 417 436 48 475480

0 40 80 120 160 200 240 280 320 360 400 440 480

miz

Figure S1. GC-MS profile of aniline.
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Figure S2. GC-MS profile of p-toluidine
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Figure S3. GC-MS profile of 4-ethylaniline
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Figure S4. GC-MS profile of 4-aminophenol
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Figure S6. GC-MS profile of Benzene-1,4-diamine (p-phenylene diamine)
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Figure S7. GC-MS profile of 4-aminobenzenesulfonamide (Sulphanilamide)
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Figure S8. GC-MS profile of 1-naphthylamine
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Figure S9. GC-MS profile of 4-aminobenzonitrile
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Figure S10. GC-MS profile of 4-aminobenzaldehyde
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Figure S11. GC-MS profile of 4-amino-1H-indole

Figure S12. GC-MS profile of Sulphanilamide.
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S3. Recyclability chart for Ni@N-CNT nanocatalyst
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Figure S13. Recyclability data chart: 2 mmol nitrobenzene, 50 mg Ni@N-CNT, 20 mL

methanol, 5 bar H,, 80 °C and 800 rpm.



S4 TH and 3C NMR spectra of some isolated products

7.15
—0.75

—6.67
3.62

O/NHZ

L
_
>

tr iy
I 5% 2
7.‘0 615 6‘.0 5.‘5 510 4‘.5 410 35 31(] 215 2:0 1‘.5 1.‘0 0:5 UJU
1 {ppm)
Figure S14. '"H NMR of aniline.
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Figure S15. 3C NMR of aniline.

TH NMR (600 MHz, CDCl3) 6 7.15 (t, 2H), 6.75 (t, 2H), 6.67 (d, 2H), 3.62 (s, 2H) 3C NMR
(150 MHz, CDCl3) 6 146.5, 129.5, 118.7, 115.2
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Figure S16. '"H NMR of p-toludine.
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Figure S17. 3C NMR of p-toludine.

IH NMR (600 MHz, DMSO-d) d 6.78 (d, 2H), 6.46 (d, 2H), 4.73 (s, 2H), 2.10 (s, 3H). 13C
NMR (150 MHz, DMSO-dg) § 146.5, 129.8, 124.7, 114.6, 20.8
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Figure S18. '"H NMR of 4-ethylaniline.
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Figure S19. 3C NMR of 4-ethylaniline.

H NMR (600 MHz, CDCl3) § 6.99 (d, 2H), 6.61 (d, 2H), 3.52 (s, 2H), 2.52 (q, 2H), 1.20 (t,
3H). 13C NMR (150 MHz, CDCl3) 6 144.2, 134.7, 128.7, 115.6, 28.09, 15.9
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Figure S20. '"H NMR of 1-aminonapthalene.
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Figure S21. 3C NMR of 1-aminonapthalene.

IH NMR (600 MHz, CDCls) 6 8.06 (d, 1H), 7.72 (d, 1H), 7.40 (t, 1H), 7.36 (¢, 1H), 7.20 (t,
1H), 7.09 (d, 1H), 6.69 (d, 1H), 5.68 (s, 2H). 3C NMR (150 MHz, CDCly) & 145.1, 134.7,

128.3,127.2,126.0, 124.2, 123.2, 122.8, 116.0, 108.0
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Figure S22. '"H NMR of 4-aminobenzonitrile.
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Figure S23. 3C NMR of 4-aminobenzonitrile.

IH NMR (600 MHz, CDCl;) & 7.39 (d, 2H), 6.64 (d, 2H), 6.14 (s, 2H). 3C NMR (150 MHz,
CDCl3) 6 153.5, 134.0, 121.2, 114.0, 96.0
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