Supporting Information

Radii-Dependent Self-Assembly of Chiral Lanthanide Complexes:

Synthetic, Chiroptical, and Single-molecule Magnet Behavior

Ge Li,^a Xiaoxi Zhao,^a Qingxin Han,^c Li Wang,^{*b}Weisheng Liu^{*a}

a. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R.China

b. College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, P.R. China

c. College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

E/mail: liuws@lzu.edu.cn, lwang2018@xsyu.edu.cn

 Table S1 Crystal Data and Structure Refinement Parameters for Complexes.

	Complex 1a	Complex 1b	Complex 2a	Complex 2b
Formula	$C_{104}H_{116}La_3N_{17}O_{34}$	$C_{104}H_{114}La_{3}N_{17}O_{34}$	$C_{108}H_{120}Dy_5N_{17}O_{36}$	$C_{112}H_{126}Dy_5N_{19}O_{36}$
Formula Weight	2564.86	2562.85	3044.70	3126.81
Crystal System	Orthorhombic	Orthorhombic	Tetragonal	Tetragonal
Space Group	P212121	$P2_{1}2_{1}2_{1}$	P4 ₂ 2 ₁ 2	P4 ₂ 2 ₁ 2
a (Å)	14.6618(10)	14.6403(11)	28.2725(12)	28.2054(4)
b (Å)	26.2233 (10)	26.197(2)	28.2725(12)	28.2054(4)
c (Å)	29.3764(10)	29.383(2)	18.1870(7)	18.1449(3)
α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	90	90	90	90
Ζ	4	4	4	4
Flack parameter	-0.0055(14)	0.002(4)	-0.009(9)	-0.003(3)
Volume (Å 3)	11294.66(10)	11269.5(15)	14537.5(14)	14435.1(5)
ρ_{calc} (g/cm ³)	1.508	1.511	1.391	1.439
Absorption	9 335	1 203	2 609	14 212
coefficient (mm ⁻¹)	2.555	1.205	2.009	17.212
F(000)	5208	5200	6020	6196
Temperature	293 K	296.15 K	298 K	120 K
Reflections	142478	62056	31737	49240
collected	1-12-770	02030	51757	47240
Independent ref.	22207	22165	12403	14157
Data/restraints/para	22207/97/1470	22165/80/1461	12403/249/783	14157/201/811
meters			12 100/2 19/ 100	1110,1201,011
R int	0.0752	0.0348	0.0644	0.0538
Final R indices	$R_1 = 0.0387, wR_2 =$	$R_1 = 0.0327,$	$R_1 = 0.0699, wR_2 =$	$R_1 = 0.0587, wR_2 =$
[I>2.0σ(I)]	0.1022	$wR_2 = 0.0812$	0.1331	0.1466

Final R indexes [all	$R_1 = 0.0398, wR_2 =$	$R_1 = 0.0369,$	$R_1 = 0.0984, wR_2 =$	$R_1 = 0.0888, wR_2 =$
data]	0.1028	$wR_2 = 0.0833$	0.1484	0.1661
GOF	1.022	1.062	1.046	0.969

Table S2 Selected Bond Lengths (Å) and Angles (°) for All Complexes.

Complex 1a					
La(1)-O(2)	2.428(4)	La(2)-O(5)	2.764(5)	La(3)-O(9)	2.616(5)
La(1)-O(3)	2.578(5)	La(2)-O(6)	2.466(4)	La(3)-O(10)	2.562(4)
La(1)-O(6)	2.470(4)	La(2)-O(10)	2.689(4)	La(3)-O(15)	2.618(4)
La(1)-O(7)	2.588(5)	La(2)-O(11)	2.591(4)	La(3)-O(16)	2.597(5)
La(1)-O(11)	2.613(5)	La(2)-O(14)	2.665(5)	La(3)-O(18)	2.465(4)
La(1)-O(12)	2.672(4)	La(2)-O(15)	2.595(4)	La(3)-O(19)	2.585(4)
La(1)-O(13)	2.639(5)	La(2)-O(17)	2.748(4)	La(3)-O(22)	2.462(4)
La(1)-O(14)	2.574(5)	La(2)-O(18)	2.453(4)	La(3)-O(23)	2.599(4)
La(1)-N(1)	2.855(6)	La(2)-N(5)	2.637(6)	La(3)-N(9)	2.782(6)
La(1)-N(3)	2.804(5)	La(2)-N(8)	2.613(6)	La(3)-N(11)	2.809(6)
O(2)-La(1)-O(3)	111.62(16)	O(6)-La(2)-O(5)	59.32(14)	O(9)-La(3)-O(15)	110.51(14)
O(2)-La(1)-O(6)	168.40(17)	O(6)-La(2)-O(10)	138.75(14)	O(9)-La(3)-N(9)	144.14(16)
O(2)-La(1)-O(7)	70.97(18)	O(6)-La(2)-O(11)	71.88(14)	O(9)-La(3)-N(11)	86.87(15)
O(2)-La(1)-O(11)	110.05(15)	O(6)-La(2)-O(14)	65.67(14)	O(10)-La(3)-O(9)	61.20(14)
O(2)-La(1)-O(12)	57.97(15)	O(6)-La(2)-O(15)	120.78(14)	O(10)-La(3)-O(15)	61.28(14)
O(2)-La(1)-O(13)	75.74(17)	O(6)-La(2)-O(17)	73.42(14)	O(10)-La(3)-O(16)	78.06(15)
O(2)-La(1)-O(14)	124.17(16)	O(6)-La(2)-N(5)	132.29(15)	O(10)-La(3)-O(19)	137.96(14)
O(2)-La(1)-N(1)	61.37(16)	O(6)-La(2)-N(8)	123.82(17)	O(10)-La(3)-O(23)	80.97(14)
O(2)-La(1)-N(3)	107.58(16)	O(10)-La(2)-O(5)	118.24(13)	O(10)-La(3)-N(9)	129.15(15)
O(3)-La(1)-O(7)	128.08(16)	O(10)-La(2)-O(17)	74.75(14)	O(10)-La(3)-N(11)	136.37(15)
O(3)-La(1)-O(11)	136.76(15)	O(11)-La(2)-O(5)	124.17(14)	O(15)-La(3)-N(9)	102.47(15)
O(3)-La(1)-O(12)	141.17(15)	O(11)-La(2)-O(10)	116.04(14)	O(15)-La(3)-N(11)	161.43(15)
O(3)-La(1)-O(13)	69.28(15)	O(11)-La(2)-O(14)	61.08(14)	O(16)-La(3)-O(9)	73.07(16)
O(3)-La(1)-N(1)	57.57(16)	O(11)-La(2)-O(15)	165.73(13)	O(16)-La(3)-O(15)	59.97(14)
O(3)-La(1)-N(3)	73.92(16)	O(11)-La(2)-O(17)	64.72(13)	O(16)-La(3)-O(23)	139.92(15)
O(6)-La(1)-O(3)	70.13(15)	O(11)-La(2)-N(5)	60.86(15)	O(16)-La(3)-N(9)	138.60(16)
O(6)-La(1)-O(7)	98.71(16)	O(11)-La(2)-N(8)	107.45(15)	O(16)-La(3)-N(11)	122.63(15)
O(6)-La(1)-O(11)	71.45(14)	O(14)-La(2)-O(5)	74.66(14)	O(18)-La(3)-O(9)	116.81(15)
O(6)-La(1)-O(12)	128.25(14)	O(14)-La(2)-O(10)	155.24(14)	O(18)-La(3)-O(10)	67.86(14)
O(6)-La(1)-O(13)	114.87(15)	O(14)-La(2)-O(17)	119.26(14)	O(18)-La(3)-O(15)	70.84(14)
O(6)-La(1)-O(14)	67.06(14)	O(15)-La(2)-O(5)	64.59(13)	O(18)-La(3)-O(16)	129.29(14)
O(6)-La(1)-N(1)	113.67(15)	O(15)-La(2)-O(10)	59.93(13)	O(18)-La(3)-O(19)	100.08(14)

O(6)-La(1)-N(3)	61.38(15)	O(15)-La(2)-O(14)	116.05(14)	O(18)-La(3)-O(23)	70.63(14)
O(7)-La(1)-O(11)	76.75(15)	O(15)-La(2)-O(17)	123.10(14)	O(18)-La(3)-N(9)	61.36(15)
O(7)-La(1)-O(12)	86.34(15)	O(15)-La(2)-N(5)	106.93(15)	O(18)-La(3)-N(11)	107.87(15)
O(7)-La(1)-O(13)	146.37(15)	O(15)-La(2)-N(8)	60.82(15)	O(19)-La(3)-O(9)	142.89(15)
O(7)-La(1)-N(1)	85.42(16)	O(17)-La(2)-O(5)	119.07(13)	O(19)-La(3)-O(15)	76.68(14)
O(7)-La(1)-N(3)	57.54(15)	O(18)-La(2)-O(5)	72.74(14)	O(19)-La(3)-O(16)	80.81(15)
O(11)-La(1)-O(12)	59.66(13)	O(18)-La(2)-O(6)	75.37(14)	O(19)-La(3)-O(23)	134.88(15)
O(11)-La(1)-O(13)	111.22(14)	O(18)-La(2)-O(10)	66.00(14)	O(19)-La(3)-N(9)	58.04(15)
O(11)-La(1)-N(1)	162.09(15)	O(18)-La(2)-O(11)	120.69(13)	O(19)-La(3)-N(11)	85.49(15)
O(11)-La(1)-N(3)	103.93(14)	O(18)-La(2)-O(14)	138.17(14)	O(22)-La(3)-O(9)	73.24(15)
O(12)-La(1)-N(1)	118.08(15)	O(18)-La(2)-O(15)	71.44(14)	O(22)-La(3)-O(10)	125.84(14)
O(12)-La(1)-N(3)	143.68(15)	O(18)-La(2)-O(17)	59.16(13)	O(22)-La(3)-O(15)	115.91(15)
O(13)-La(1)-O(12)	71.89(15)	O(18)-La(2)-N(5)	123.26(16)	O(22)-La(3)-O(16)	61.19(15)
O(13)-La(1)-N(1)	82.84(16)	O(18)-La(2)-N(8)	131.85(15)	O(22)-La(3)-O(18)	166.16(14)
O(13)-La(1)-N(3)	141.13(15)	N(5)-La(2)-O(5)	160.06(15)	O(22)-La(3)-O(19)	71.18(15)
O(14)-La(1)-O(3)	85.06(16)	N(5)-La(2)-O(10)	65.72(15)	O(22)-La(3)-O(23)	107.50(15)
O(14)-La(1)-O(7)	138.68(16)	N(5)-La(2)-O(14)	95.03(15)	O(22)-La(3)-N(9)	104.85(16)
O(14)-La(1)-O(11)	62.01(14)	N(5)-La(2)-O(17)	80.83(15)	O(22)-La(3)-N(11)	61.63(16)
O(14)-La(1)-O(12)	75.56(14)	N(8)-La(2)-O(5)	81.35(16)	O(23)-La(3)-O(9)	66.91(15)
O(14)-La(1)-O(13)	60.77(15)	N(8)-La(2)-O(10)	93.64(16)	O(23)-La(3)-O(15)	133.70(14)
O(14)-La(1)-N(1)	135.88(16)	N(8)-La(2)-O(14)	66.29(16)	O(23)-La(3)-N(9)	80.35(15)
O(14)-La(1)-N(3)	128.23(15)	N(8)-La(2)-O(17)	159.39(16)	O(23)-La(3)-N(11)	58.32(15)

D—H····A	Distance(D—H)	Distance(H…A)	Distance (D····A)	Angles(D—H···A)
O(4)-H(4)O(28)	0.82	1.86	2.68(2)	175.0
O(8)-H(8)O(22) ⁱ	0.82	1.92	2.736(7)	172.7
O(20)-H(20)N(6) ⁱⁱ	0.82	2.04	2.852(7)	172.0
O(24)-H(24)O(33)	0.82	1.92	2.714(9)	164.0
N(10)-H(10)O(31) ⁱⁱⁱ	0.86	2.03	2.844(11)	157.1
O(25)-H(25B)O(26)	0.83	2.05	2.838(12)	158.4
O(26)-H(26A)O(35)	0.86	2.21	2.989(17)	151.4
O(27)-H(27A)N(16) ^{iv}	0.90	2.04	2.821(19)	144.5
O(31)-H(31A)O(27) v	0.85	2.27	2.802(17)	120.5
O(31)-H(31B)O(32)	0.81	1.89	2.675(17)	161.8
O(32)-H(32D)N(14) ⁱⁱⁱ	0.88	1.96	2.81(3)	161.9
O(32)-H(32E)N(7) ⁱ	0.90	1.89	2.785(10)	176.8
O(33)-H(33A)O(35)	0.85	2.18	2.840(13)	134.0
O(34)-H(34A)O(36)	0.85	1.78	2.47(4)	136.8

U(35)-H(35A)U	(28) ^v	0.86	2.02		2.81(2)	153.0
O(36)-H(36A)O Symmetry codes: -z-3/2; (v) $x+1/2$,	(i) $-x-3/2, -y-3/2, -y-3/2, -z-1.$	0.80 1, <i>z</i> +1/2; (ii) - <i>x</i> -2, <i>y</i>	2.11 1/2, -z-	3/2; (iii)	2.88(2) x-1/2, -y-3/2, -z-	162.2 -1; (iv) -x-1, y-1
Complex 1h						
	2 428(4)	$L_{\alpha}(2) \cap (5)$	2 774(4)		$I_{2}(2) O(0)$	2 600(4)
La(1) - O(2)	2.420(4)	La(2)-O(3)	2.774(4)		La(3) - O(9)	2.009(4)
La(1) - O(3)	2.369(4)	La(2) - O(0)	2.400(4)		La(3) - O(10)	2.334(4)
$L_{a}(1) - O(0)$	2.409(4)	$L_{a}(2) - O(10)$	2.090(4)	, ,	$L_{a}(3) - O(15)$	2.032(4)
La(1) - O(1)	2.000(4)	La(2)-O(11)	2.364(4)		La(3) - O(10)	2.000(4)
La(1) - O(11)	2.010(4)	La(2) - O(14)	2.000(4)		La(3) - O(10)	2.400(4)
La(1) - O(12)	2.070(4)	La(2) - O(13) La(2) $O(17)$	2.003(4)	1	$L_{a}(3) - O(19)$	2.370(4)
La(1)-O(13)	2.039(4)	La(2) - O(17)	2.14/(4)	' \	La(3) - O(22)	2.472(4)
La(1)-O(14)	2.302(+) 2.854(5)	La(2)-O(10)	2.402(4)	' \	La(3)=O(23)	2.390(4)
$L_{a(1)-N(3)}$	2.03+(3) 2.804(5)	La(2)-N(3)	2.057(5)	' \	$L_{a(3)}-N(11)$	2.702(3)
Lu(1)-11(3)	2.007(3)	$Lu(2)^{-1}(0)$	2.020(3)	'	$La(3)^{-1}(11)$	2.001(3)
O(2)-La(1)-O(3)	111.84(15)	O(6)-La(2)-O(5)	59.	28(12)	O(9)-La(3)-O(15) 110.75(13)
O(2)-La(1)-O(6)	168.18(15)	O(6)-La(2)-O(10) 138	3.84(13)	O(9)-La(3)-N(9)	144.77(14)
O(2)-La(1)-O(7)	70.76(16)	O(6)-La(2)-O(11) 71.	64(13)	O(9)-La(3)-N(11) 86.86(14)
O(2)-La(1)-O(11)	110.28(14)	O(6)-La(2)-O(14) 65.	84(13)	O(10)-La(3)-O(9) 61.71(13)
O(2)-La(1)-O(12)	58.21(13)	O(6)-La(2)-O(15) 120).96(13)	O(10)-La(3)-O(1	5) 61.43(12)
O(2)-La(1)-O(13)	75.46(15)	O(6)-La(2)-O(17) 73.	01(13)	O(10)-La(3)-O(1	6) 77.99(13)
O(2)-La(1)-O(14)	124.23(14)	O(6)-La(2)-N(5)	131	.96(14)	O(10)-La(3)-O(1	9) 137.36(13)
O(2)-La(1)-N(1)	61.36(15)	O(6)-La(2)-N(8)	123	3.66(15)	O(10)-La(3)-O(2	3) 80.71(13)
O(2)-La(1)-N(3)	107.15(15)	O(10)-La(2)-O(5) 118	3.02(12)	O(10)-La(3)-N(9)) 129.34(13)
O(3)-La(1)-O(7)	128.60(14)	O(10)-La(2)-O(1	7) 75.	03(13)	O(10)-La(3)-N(1	1) 136.24(14)
O(3)-La(1)-O(11)	136.36(13)	O(11)-La(2)-O(5) 124	1.21(12)	O(15)-La(3)-N(9)) 102.04(13)
O(3)-La(1)-O(12)	141.13(14)	O(11)-La(2)-O(1	0) 116	5.09(12)	O(15)-La(3)-N(1	1) 161.25(14)
O(3)-La(1)-O(13)	69.74(14)	O(11)-La(2)-O(1	4) 61.	18(13)	O(16)-La(3)-O(9)) 72.70(15)
O(3)-La(1)-N(1)	57.64(15)	O(11)-La(2)-O(1	5) 165	5.70(12)	O(16)-La(3)-O(1	5) 59.85(13)
O(3)-La(1)-N(3)	74.37(15)	O(11)-La(2)-O(1	7) 64.	78(12)	O(16)-La(3)-N(9) 138.08(15)
O(6)-La(1)-O(3)	70.19(14)	O(11)-La(2)-N(5) 60.	74(14)	O(16)-La(3)-N(1	1) 123.20(14)
O(6)-La(1)-O(7)	98.66(14)	O(11)-La(2)-N(8) 107	7.67(14)	O(18)-La(3)-O(9) 117.77(13)
O(6)-La(1)-O(11)	71.01(13)	O(14)-La(2)-O(5) 75.	08(13)	O(18)-La(3)-O(1	0) 68.10(13)
O(6)-La(1)-O(12)	127.95(13)	O(14)-La(2)-O(1	0) 155	5.00(12)	O(18)-La(3)-O(1	5) 70.85(12)
O(6)-La(1)-O(13)	115.46(13)	O(14)-La(2)-O(1	7) 119	9.35(12)	O(18)-La(3)-O(1	6) 129.22(13)
O(6)-La(1)-O(14)	67.14(13)	O(15)-La(2)-O(5) 64.	57(12)	O(18)-La(3)-O(1	9) 100.03(13)
O(6)-La(1)-N(1)	113.83(14)	O(15)-La(2)-O(1	0) 60.	03(13)	O(18)-La(3)-O(2	2) 165.93(13)

O(6)-La(1)-N(3)	61.65(14)	O(15)-La(2)-O(14)	115.73(13)	O(18)-La(3)-O(23)	70.65(13)
O(7)-La(1)-O(11)	76.45(13)	O(15)-La(2)-O(17)	123.27(13)	O(18)-La(3)-N(9)	61.28(13)
O(7)-La(1)-O(12)	86.06(14)	O(15)-La(2)-N(5)	107.08(14)	O(18)-La(3)-N(11)	107.35(14)
O(7)-La(1)-O(13)	145.78(14)	O(15)-La(2)-N(8)	60.53(14)	O(19)-La(3)-O(9)	141.90(13)
O(7)-La(1)-N(1)	85.94(14)	O(17)-La(2)-O(5)	118.23(12)	O(19)-La(3)-O(15)	75.94(13)
O(7)-La(1)-N(3)	57.46(14)	O(18)-La(2)-O(5)	72.15(13)	O(19)-La(3)-O(16)	80.10(14)
O(11)-La(1)-O(12)	59.80(12)	O(18)-La(2)-O(6)	75.58(13)	O(19)-La(3)-O(23)	135.86(14)
O(11)-La(1)-O(13)	111.18(13)	O(18)-La(2)-O(10)	65.97(12)	O(19)-La(3)-N(9)	58.23(14)
O(11)-La(1)-N(1)	162.33(14)	O(18)-La(2)-O(11)	120.86(13)	O(19)-La(3)-N(11)	86.22(14)
O(11)-La(1)-N(3)	103.58(14)	O(18)-La(2)-O(14)	138.38(13)	O(22)-La(3)-O(9)	72.57(14)
O(12)-La(1)-N(1)	118.21(14)	O(18)-La(2)-O(15)	71.39(13)	O(22)-La(3)-O(10)	125.85(13)
O(12)-La(1)-N(3)	143.33(14)	O(18)-La(2)-O(17)	59.15(13)	O(22)-La(3)-O(15)	115.86(13)
O(13)-La(1)-O(12)	71.41(13)	O(18)-La(2)-N(5)	123.42(14)	O(22)-La(3)-O(16)	61.32(13)
O(13)-La(1)-N(1)	82.70(14)	O(18)-La(2)-N(8)	131.47(14)	O(22)-La(3)-O(19)	71.11(14)
O(13)-La(1)-N(3)	141.81(14)	N(5)-La(2)-O(5)	160.56(14)	O(22)-La(3)-O(23)	107.67(14)
O(14)-La(1)-O(3)	85.00(14)	N(5)-La(2)-O(10)	65.88(14)	O(22)-La(3)-N(9)	104.69(14)
O(14)-La(1)-O(7)	138.28(14)	N(5)-La(2)-O(14)	94.79(14)	O(22)-La(3)-N(11)	62.06(15)
O(14)-La(1)-O(11)	61.88(13)	N(5)-La(2)-O(17)	81.17(14)	O(23)-La(3)-O(9)	67.27(14)
O(14)-La(1)-O(12)	75.28(13)	N(8)-La(2)-O(5)	81.53(15)	O(23)-La(3)-O(15)	133.58(13)
O(14)-La(1)-O(13)	60.96(13)	N(8)-La(2)-O(10)	93.72(14)	O(23)-La(3)-O(16)	139.86(14)
O(14)-La(1)-N(1)	135.76(14)	N(8)-La(2)-O(14)	66.00(14)	O(23)-La(3)-N(9)	81.02(14)
O(14)-La(1)-N(3)	128.60(14)	N(8)-La(2)-O(17)	160.04(15)	O(23)-La(3)-N(11)	58.30(14)

D—H····A	Distance(D—H)	Distance(H···A)	Distance (D···A)	Angles(D—H···A)
O(8)-H(8)O(22) ⁱ	0.82	1.92	2.738(6)	173.6
O(20)-H(20)N(6) ⁱⁱ	0.82	2.03	2.844(7)	174.0
O(24)-H(24)O(33)	0.82	1.99	2.733(9)	149.8
N(10)-H(10)O(31) ⁱⁱⁱ	0.86	2.00	2.811(9)	155.9
O(25)-H(25B)O(26)	0.83	1.92	2.743(17)	169.7
O(26)-H(26A)O(35)	0.85	2.03	2.83(2)	156.2
O(27)-H(27A)N(16) ^{iv}	0.87	2.17	2.790(17)	128.0
O(31)-H(31A)O(27) ^v	0.85	2.34	2.862(15)	120.5
O(31)-H(31B)O(32)	0.81	1.95	2.738(13)	162.0
O(32)-H(32E)N(7) ⁱ	0.90	1.89	2.789(9)	176.2
O(33)-H(33A)O(35)	0.85	2.13	2.775(15)	132.4
O(34)-H(34A)O(36)	0.85	1.97	2.71(3)	144.4
O(35)-H(35A)O(28) ^v	0.86	1.98	2.80(2)	160.3
O(35)-H(35B)O(34) iii	0.85	2.26	2.87(2)	128.3

O(36)-H(36A)...O(32)

2.03

166.3

2.815(16)

Symmetry codes: (i) -*x*+3/2, -*y*+1, *z*-1/2; (ii) -*x*+2, *y*+1/2, -*z*+3/2; (iii) *x*+1/2, -*y*+3/2, -*z*+1; (iv) -*x*+1, *y*+1/2, -*z*+3/2; (v) *x*-1/2, -*y*+3/2, -*z*+1.

0.80

Complex 2a					
Dy(1)-O(7)	2.380(12)	Dy(2)-O(11)	2.195(12)	Dy(3)-O(10)	2.342(13)
Dy(1)-O(2)	2.319(13)	Dy(2)-O(7)	2.411(13)	Dy(3)-O(10)	2.342(13)
Dy(1)-O(13)	2.378(12)	Dy(2)-O(10)	2.317(11)	Dy(3)-O(16)	2.323(12)
Dy(1)-O(6)	2.411(12)	Dy(2)-O(16)	2.253(13)	Dy(3)-O(16)	2.323(12)
Dy(1)-O(3)	2.232(13)	Dy(2)-O(2)	2.312(13)	Dy(3)-O(9)	2.220(13)
Dy(1)-O(17)	2.315(12)	Dy(2)-O(8)	2.454(15)	Dy(3)-O(9)	2.220(13)
Dy(1)-N(2)	2.503(16)	Dy(2)-O(1)	2.398(14)	Dy(3)-O(15)	2.448(14)
Dy(1)-N(4)	2.473(16)	Dy(2)-N(6)	2.496(16)	Dy(3)-O(15)	2.448(14)
O(7)-Dy(1)-O(6)	124.0(4)	O(11)-Dy(2)-O(7)	87.4(4)	O(10)-Dy(3)-O(10)	143.5(6)
O(7)-Dy(1)-N(2)	72.6(5)	O(11)-Dy(2)-O(10)	138.5(4)	O(10)-Dy(3)-O(15)	119.1(4)
O(7)-Dy(1)-N(4)	137.3(5)	O(11)-Dy(2)-O(16)	155.7(4)	O(10)-Dy(3)-O(15)	88.3(4)
O(2)-Dy(1)-O(7)	73.5(4)	O(11)-Dy(2)-O(2)	82.9(4)	O(10)-Dy(3)-O(15)	119.1(4)
O(2)-Dy(1)-O(13)	75.7(4)	O(11)-Dy(2)-O(8)	82.8(5)	O(10)-Dy(3)-O(15)	88.3(4)
O(2)-Dy(1)-O(6)	142.6(5)	O(11)-Dy(2)-O(1)	104.1(4)	O(16)-Dy(3)-O(10)	64.2(4)
O(2)-Dy(1)-N(2)	145.8(5)	O(11)-Dy(2)-N(6)	74.7(5)	O(16)-Dy(3)-O(10)	64.2(4)
O(2)-Dy(1)-N(4)	64.9(5)	O(7)-Dy(2)-O(8)	65.6(4)	O(16)-Dy(3)-O(10)	136.2(5)
O(13)-Dy(1)-O(7)	70.6(4)	O(7)-Dy(2)-N(6)	143.7(5)	O(16)-Dy(3)-O(10)	136.2(5)
O(13)-Dy(1)-O(6)	138.9(4)	O(10)-Dy(2)-O(7)	119.3(4)	O(16)-Dy(3)-O(16)	125.4(6)
O(13)-Dy(1)-N(2)	89.1(5)	O(10)-Dy(2)-O(8)	81.0(5)	O(16)-Dy(3)-O(15)	84.7(4)
O(13)-Dy(1)-N(4)	106.4(5)	O(10)-Dy(2)-O(1)	78.9(4)	O(16)-Dy(3)-O(15)	84.7(4)
O(6)-Dy(1)-N(2)	64.7(5)	O(10)-Dy(2)-N(6)	65.1(4)	O(16)-Dy(3)-O(15)	54.8(4)
O(6)-Dy(1)-N(4)	87.2(5)	O(16)-Dy(2)-O(7)	74.0(4)	O(16)-Dy(3)-O(15)	54.8(4)
O(3)-Dy(1)-O(7)	141.1(4)	O(16)-Dy(2)-O(10)	65.7(4)	O(9)-Dy(3)-O(10)	68.6(4)
O(3)-Dy(1)-O(2)	116.6(5)	O(16)-Dy(2)-O(2)	76.8(4)	O(9)-Dy(3)-O(10)	84.6(5)
O(3)-Dy(1)-O(13)	75.9(4)	O(16)-Dy(2)-O(8)	103.0(5)	O(9)-Dy(3)-O(10)	84.6(5)
O(3)-Dy(1)-O(6)	72.4(5)	O(16)-Dy(2)-O(1)	80.3(5)	O(9)-Dy(3)-O(10)	68.6(4)
O(3)-Dy(1)-O(17)	134.6(5)	O(16)-Dy(2)-N(6)	129.3(5)	O(9)-Dy(3)-O(16)	132.9(5)
O(3)-Dy(1)-N(2)	88.1(6)	O(2)-Dy(2)-O(7)	73.0(4)	O(9)-Dy(3)-O(16)	89.4(5)
O(3)-Dy(1)-N(4)	70.8(5)	O(2)-Dy(2)-O(10)	132.9(5)	O(9)-Dy(3)-O(16)	89.4(5)
O(17)-Dy(1)-O(7)	82.8(4)	O(2)-Dy(2)-O(8)	136.6(4)	O(9)-Dy(3)-O(16)	132.9(5)
O(17)-Dy(1)-O(2)	79.7(4)	O(2)-Dy(2)-O(1)	67.2(4)	O(9)-Dy(3)-O(9)	86.2(7)
O(17)-Dy(1)-O(13	6) 147.8(4)	O(2)-Dy(2)-N(6)	133.4(5)	O(9)-Dy(3)-O(15)	94.2(5)
O(17)-Dv(1)-O(6)	71.4(4)	O(8)-Dy(2)-N(6)	80.7(5)	O(9)-Dv(3)-O(15)	94.2(5)

O(17)-Dy(1)-N(2)	100.2(5)	O(1)-Dy(2)-O	(7) 136.5(4)	O(9)-Dy(3)-O(15)	172.3(4)
O(17)-Dy(1)-N(4)	80.9(5)	O(1)-Dy(2)-O	(8) 156.2(4)	O(9)-Dy(3)-O(15)	172.3(5)
N(4)-Dy(1)-N(2)	149.3(5)	O(1)-Dy(2)-N	(6) 79.3(5)	O(15)-Dy(3)-O(15)	86.5(6)
O(7)-Dy(1)-O(6)	124.0(4)	O(11)-Dy(2)-0	O(7) 87.4(4)	O(10)-Dy(3)-O(10)	143.5(6)
O(7)-Dy(1)-N(2)	72.6(5)	O(11)-Dy(2)-0	O(10) 138.5(4)	O(10)-Dy(3)-O(15)	119.1(4)
O(7)-Dy(1)-N(4)	137.3(5)	O(11)-Dy(2)-0	D(16) 155.7(4)	O(10)-Dy(3)-O(15)	88.3(4)
O(2)-Dy(1)-O(7)	73.5(4)	O(11)-Dy(2)-0	O(2) 82.9(4)	O(10)-Dy(3)-O(15)	119.1(4)
O(2)-Dy(1)-O(13)	75.7(4)	O(11)-Dy(2)-0	O(8) 82.8(5)	O(10)-Dy(3)-O(15)	88.3(4)
O(2)-Dy(1)-O(6)	142.6(5)	O(11)-Dy(2)-0	O(1) 104.1(4)	O(16)-Dy(3)-O(10)	64.2(4)
D—H····A	Dis	tance(D—H)	Distance(H···A)	Distance (D…A)	Angles(D—H···A
O(13)-H(13A)O(1	1)	0.87	2.25	3.061(18)	154.6
O(13)-H(13A)O(1	12)	0.87	2.40	2.965(18)	123.3
O(13)-H(13B)O(1	4)	0.87	1.86	2.665(14)	152.4
O(1)-H(1)O(9) ⁱ		0.861(14)	1.82(10)	2.489(17)	134(11)
O(5)-H(5)N(1) ⁱⁱⁱ		0.80	2.17	2.95(3)	163.2
N(7)-H(7)O(15) ⁱ		0.98	1.66	2.63(2)	166.7
N(7)-H(7)O(17) ⁱ		0.98	2.47	3.14(2)	125.5
N(7)-H(7)N(8) ⁱ		0.98	2.31	3.22(3)	155.0
		0.86	2.08	2.681(13)	126.8
O(14)-H(14)O(3)		0.00			
O(14)-H(14)O(3) O(14)-H(14)O(4)		0.86	2.39	3.21(3)	160.4

Complex 2b					
Dy(1)-O(7)	2.406(8)	Dy(2)-O(11)	2.204(7)	Dy(3)-O(10)	2.361(8)
Dy(1)-O(2)	2.336(7)	Dy(2)-O(7)	2.407(8)	Dy(3)-O(10)	2.361(8)
Dy(1)-O(13)	2.399(8)	Dy(2)-O(10)	2.329(7)	Dy(3)-O(16)	2.306(7)
Dy(1)-O(6)	2.412(8)	Dy(2)-O(16)	2.285(8)	Dy(3)-O(16)	2.306(7)
Dy(1)-O(3)	2.253(7)	Dy(2)-O(2)	2.331(9)	Dy(3)-O(9)	2.255(9)
Dy(1)-O(17)	2.327(7)	Dy(2)-O(8)	2.470(9)	Dy(3)-O(9)	2.255(9)
Dy(1)-N(2)	2.491(11)	Dy(2)-O(1)	2.427(9)	Dy(3)-O(15)	2.471(9)
O(7)-Dy(1)-O(6)	123.0(3)	O(11)-Dy(2)-O(7)	87.1(3)	O(10) -Dy(3)-O(10) 141.8(4)
O(7)-Dy(1)-N(2)	72.1(3)	O(11)-Dy(2)-O(10)	137.9(3)	O(10) -Dy(3)-O(15) 88.5(3)
O(7)-Dy(1)-N(4)	137.1(3)	O(11)-Dy(2)-O(16)	155.4(3)	O(10)-Dy(3)-O(15)	88.5(3)
O(2)-Dy(1)-O(7)	74.4(3)	O(11)-Dy(2)-O(2)	83.2(3)	O(10) -Dy(3)-O(15) 120.0(3)
O(2)-Dy(1)-O(13) 75.4(3)	O(11)-Dy(2)-O(8)	82.1(3)	O(10)-Dy(3)-O(15)	120.0(3)
O(2)-Dy(1)-O(6)	142.7(3)	O(11)-Dy(2)-O(1)	104.6(3)	O(16)-Dy(3)-O(10)	136.0(3)
O(2)-Dy(1)-N(2)	146.1(3)	O(11)-Dy(2)-N(6)	74.8(3)	O(16)-Dy(3)-O(10)	65.7(3)
O(2)-Dy(1)-N(4)	63.8(3)	O(7)-Dy(2)-O(8)	65.4(3)	O(16) -Dy(3)-O(10) 136.0(3)

O(13)-Dy(1)-O(7)	70.2(3)	O(7)-Dy(2)-O(1)	137.0(3)	O(16) -Dy(3)-O(10)	65.7(3)
O(13)-Dy(1)-O(6)	139.4(3)	O(7)-Dy(2)-N(6)	142.8(4)	O(16)-Dy(3)-O(16)	124.0(4)
O(13)-Dy(1)-N(2)	88.9(3)	O(10)-Dy(2)-O(7)	119.5(3)	O(16) -Dy(3)-O(15)	54.3(3)
O(13)-Dy(1)-N(4)	106.5(3)	O(10)-Dy(2)-O(2)	132.7(3)	O(16)-Dy(3)-O(15)	54.3(3)
O(6)-Dy(1)-N(2)	64.5(3)	O(10)-Dy(2)-O(8)	81.1(3)	O(16)-Dy(3)-O(15)	84.4(3)
O(6)-Dy(1)-N(4)	88.2(4)	O(10)-Dy(2)-O(1)	78.7(3)	O(16) -Dy(3)-O(15)	84.4(3)
O(3)-Dy(1)-O(7)	141.0(3)	O(10)-Dy(2)-N(6)	64.3(3)	O(9)-Dy(3)-O(10)	83.8(3)
O(3)-Dy(1)-O(2)	115.8(3)	O(16)-Dy(2)-O(7)	73.9(3)	O(9)-Dy(3)-O(10)	68.2(3)
O(3)-Dy(1)-O(13)	76.2(3)	O(16)-Dy(2)-O(10)	66.5(3)	O(9) -Dy(3)-O(10)	68.2(3)
O(3)-Dy(1)-O(6)	73.1(3)	O(16)-Dy(2)-O(2)	76.8(3)	O(9) -Dy(3)-O(10)	83.8(3)
O(3)-Dy(1)-O(17)	135.0(3)	O(16)-Dy(2)-O(8)	103.1(3)	O(9)-Dy(3)-O(16)	133.8(3)
O(3)-Dy(1)-N(2)	88.2(3)	O(16)-Dy(2)-O(1)	80.5(3)	O(9)-Dy(3)-O(16)	89.9(3)
O(3)-Dy(1)-N(4)	71.3(3)	O(16)-Dy(2)-N(6)	129.6(3)	O(9) -Dy(3)-O(16)	133.8(3)
O(17)-Dy(1)-O(7)	82.7(3)	O(2)-Dy(2)-O(7)	74.5(3)	O(9) -Dy(3)-O(16)	89.9(3)
O(17)-Dy(1)-O(2)	79.1(3)	O(2)-Dy(2)-O(8)	137.7(3)	O(9) -Dy(3)-O(9)	85.3(5)
O(17)-Dy(1)-O(13)	146.8(3)	O(2)-Dy(2)-O(1)	66.3(3)	O(9) -Dy(3)-O(15)	171.8(3)
O(17)-Dy(1)-O(6)	71.9(3)	O(2)-Dy(2)-N(6)	133.1(3)	O(9) -Dy(3)-O(15)	94.3(3)
O(17)-Dy(1)-N(2)	101.1(3)	O(8)-Dy(2)-N(6)	79.9(4)	O(9)-Dy(3)-O(15)	171.8(3)
O(17)-Dy(1)-N(4)	80.3(3)	O(1)-Dy(2)-O(8)	156.0(3)	O(9)-Dy(3)-O(15)	94.3(3)
N(4)-Dy(1)-N(2)	150.0(4)	O(1)-Dy(2)-N(6)	79.7(4)	O(15)-Dy(3)-O(15)	87.2(4)
O(7)-Dy(1)-O(6)	123.0(3)	O(11)-Dy(2)-O(7)	87.1(3)	O(10) -Dy(3)-O(10)	141.8(4)
O(7)-Dy(1)-N(2)	72.1(3)	O(11)-Dy(2)-O(10)	137.9(3)	O(10) -Dy(3)-O(15)	88.5(3)
O(7)-Dy(1)-N(4)	137.1(3)	O(11)-Dy(2)-O(16)	155.4(3)	O(10)-Dy(3)-O(15)	88.5(3)
O(2)-Dy(1)-O(7)	74.4(3)	O(11)-Dy(2)-O(2)	83.2(3)	O(10) -Dy(3)-O(15)	120.0(3)
O(2)-Dy(1)-O(13)	75.4(3)	O(11)-Dy(2)-O(8)	82.1(3)	O(10)-Dy(3)-O(15)	120.0(3)
O(2)-Dy(1)-O(6)	142.7(3)	O(11)-Dy(2)-O(1)	104.6(3)	O(16)-Dy(3)-O(10)	136.0(3)

D —H····A	Distance(D—H)	Distance(H…A)	Distance (D…A)	Angles(D—H····A)		
O(13)-H(13A)O(11)	0.87	2.21	3.012(12)	153.9		
O(13)-H(13A)O(12)	0.87	2.35	2.916(12)	122.9		
O(13)-H(13B)O(14)	0.87	1.87	2.668(9)	151.7		
N(7)-H(7)O(15) ⁱ	1.00	1.65	2.632(16)	167.0		
N(7)-H(7)O(17) ⁱ	1.00	2.44	3.158(14)	128.1		
N(7)-H(7)N(8) ⁱ	1.00	2.33	3.273(19)	157.4		
O(14)-H(14)O(3)	0.86	2.06	2.661(9)	127.0		
O(14)-H(14)O(4)	0.86	2.38	3.209(17)	161.2		
Symmetry code: (i) $y, x, -z+1$; (ii) $y, x, -z+2$						

Figure S1 Coordination modes of ligands in complex 1a.

Figure S2 Coordination polyhedron of (a) La1, (b) La2 and (c) La3 in complex 1a.

Figure S3 Coordination modes of ligands in complex 2a.

Figure S4 Coordination polyhedron of (a) La1, (b) La2 and (c) La3 in complex 2a.

Figure S5 IR spectrum of complex 1a and 1b.

Figure S6 IR spectrum of complex 2a and 2b.

Figure S7 TGA spectra of complex 1a and 1b.

Figure S8 TGA spectra of complex 2a and 2b.

Figure S9 Comparing the simulated PXRD with experimental patterns of complexes.

Figure S10 ¹H-NMR spectrum (400 MHz, DMSO-d₆) of 1a.

Figure S11 ¹H-NMR spectrum (400 MHz, DMSO-d₆) of 1b.

Figure S13 ¹³C-NMR spectrum (400 MHz, DMSO-d₆) of 1b.

Figure S14 The temperature dependence of χ_M^{-1} for 2a. The red line represents the best fit with Curie-Weiss law.

Figure S15 Frequency dependence of the (a) in-phase (χ') and (b) out-of-phase (χ'') magnetic susceptibilities of complex **2a** measured at 2.0 K in various applied fields from 0 to 4000 Oe.

Figure S16 Cole-Cole plots of 2a at various applied fields from 0 to 4000 Oe.

Figure S17 Temperature dependence of ac susceptibility data for **2a** collected under 0 Oe dc field over the frequency from 1 to 999 Hz.

Table S3 Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 2aunder 2.0 K-15.0 K according to the generalized Debye model.

T/K	χs	χ _T	τ	α
2.0	2.14E+00	2.85E+01	9.68E-04	5.65E-01
2.2	2.13E+00	2.60E+01	7.92E-04	5.60E-01
2.4	2.29E+00	2.38E+01	6.87E-04	5.52E-01
2.6	2.29E+00	2.20E+01	6.09E-04	5.51E-01
2.8	2.41E+00	2.04E+01	5.60E-04	5.47E-01
3.0	2.47E+00	1.91E+01	5.20E-04	5.45E-01
3.5	2.63E+00	1.63E+01	4.58E-04	5.42E-01
4.0	2.85E+00	1.42E+01	4.35E-04	5.39E-01
4.5	3.02E+00	1.26E+01	4.25E-04	5.37E-01
5.0	3.27E+00	1.13E+01	4.40E-04	5.25E-01
5.5	3.40E+00	1.02E+01	4.48E-04	5.15E-01
6.0	3.50E+00	9.36E+00	4.56E-04	5.02E-01
6.5	3.54E+00	8.61E+00	4.51E-04	4.85E-01
7.0	3.56E+00	7.97E+00	4.40E-04	4.67E-01
7.5	3.58E+00	7.40E+00	4.26E-04	4.43E-01
8.0	3.52E+00	6.93E+00	3.90E-04	4.29E-01
8.5	3.49E+00	6.51E+00	3.56E-04	4.10E-01
9.0	3.45E+00	6.13E+00	3.23E-04	3.88E-01
9.5	3.41E+00	5.81E+00	2.87E-04	3.73E-01
10	3.36E+00	5.51E+00	2.54E-04	3.56E-01
11	3.29E+00	5.00E+00	2.05E-04	3.20E-01
12	3.25E+00	4.59E+00	1.73E-04	2.82E-01
13	3.21E+00	4.24E+00	1.54E-04	2.46E-01
14	3.18E+00	3.94E+00	1.50E-04	2.06E-01
15	3.12E+00	3.68E+00	1.51E-04	1.64E-01