Electronic Supporting Information

Reactions of [(dmpe) $)_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$]: synthesis and characterization of manganese(I) borohydride and hydride complexes

Jeffrey S. Price, ${ }^{a}$ Declan M. DeJordy, ${ }^{\text {a }}$ David J. H. Emslie, ${ }^{* a}$ and James F. Britten ${ }^{\text {b }}$

a. Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada. Fax: (905)-522-2509; Tel: (905)-525-9140 x23307
b. McMaster Analytical X-ray Diffraction Facility (MAX), McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1.
E-mail: emslied@mcmaster.ca
Website: https://emsliegroup.mcmaster.ca/
The supplemental file Cartesian_coordinates_for_calculated_structures.xyz contains the computedCartesian coordinates of all of the molecules reported in this study. The file may be opened as a text fileto read the coordinates, or opened directly by a structure visualization program such as Mercury(version 3.3 or later, http://www.ccdc.cam.ac.uk/pages/Home.aspx).
Contents Pages
Computational Methods S2
Figures Showing Calculated Structures with AIM Bond Paths and Critical Points. S3
Figures Showing Superimposed Calculated and X-ray Structures. S3
Tables of Selected Calculated and Crystallographically Determined Bond Lengths and Angles, Mayer Bond Orders, and AIM Properties S4-S5
Tables of Crystal Data and Crystal Structure Refinement S6-S12
Selected NMR Spectra for Complexes 3-8 S13-S48
Selected NMR Spectra for Deuteration of [(dmpe) $2 \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}$] (3) S49-S50
Experimental Details and Selected NMR Spectra of Intermediates in the Reactions of $\left[(d m p e)_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (1) with 9-BBN or HBMes 2. S51
Experimental Details and Selected NMR Spectra of Solutions Generated by Hydroboration of Ethylene by HBR_{2} S52-S58
Selected NMR Spectra for Determining the Mechanism of the Reaction of $\left[(d m p e)_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (1) with HBMes_{2}. S59
References. S60

Selected Abbreviations:

dmpe $=1,2$-bis(dimethylphosphino)ethane
9-BBN = 9-borabicyclo(3.3.1) nonane $\left(\mathrm{HBC}_{8} \mathrm{H}_{14}\right)$
Mes $=$ Mesityl (2,4,6-trimethylphenyl)
AIM = Atoms in Molecules

Computational Methods

Geometry optimization calculations were conducted with the ADF DFT package (SCM, version 2017.207). ${ }^{1}$ Calculations were performed in the gas phase within the generalized gradient approximation using the 1996 Perdew-Burke-Ernzerhof exchange and correlation functional (PBE), ${ }^{2}$ using the scalar zeroth-order approximation (ZORA) ${ }^{3}$ for relativistic effects, and Grimme's DFT-D3-BJ dispersion correction. ${ }^{4}$ Preliminary geometry optimizations were conducted with frozen cores corresponding to the configuration of the preceding noble gas (core = medium) using double- ζ basis sets with one polarization function (DZP), a Voronoi grid with an integration value of 5 , and default convergence criteria for energy and gradients. These structures were further refined using all-electron triple- ζ basis sets with two polarization functions (TZ2P) and fine integration grids (Becke ${ }^{5}$ verygoodquality). Analytical frequency calculations ${ }^{6}$ were conducted to ensure that the geometry optimization led to an energy minimum. For 3 and 4, slightly negative frequencies (frequency range from -11 to $-42 \mathrm{~cm}^{-1}$) were observed but were shown to be spurious imaginary frequencies using the SCANFREQ command. ${ }^{7}$ Atoms in Molecules (AIM) ${ }^{8}$ properties were obtained using the QTAIM keyword in SCM version 2019.301^{1} with an analysis level of Full. ${ }^{9}$

Figure S1. Calculated structures of, from left to right, [(dmpe) $)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}$] (3), [(dmpe) $\left.)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4), and [(dmpe) $\left.)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right]$ (5), with AIM bond paths, bond critical points (small red spheres), ring critical points (small green spheres), cage critical points (small blue spheres). Atoms labelled by colour; $\mathrm{Mn}=$ red, $\mathrm{B}=$ turquoise, $\mathrm{C}=$ grey, $\mathrm{H}=$ white.

Figures Showing Superimposed Calculated and X-ray Structures

Figure S2. Superposition of calculated (blue) and X -ray (red) structures of, from left to right, $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH} \mathrm{H}_{2}\right](3),\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right](4)$, and $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right]$ (5).

Tables of Selected Calculated and Crystallographically Determined Bond Lengths and Angles, Mayer Bond Orders, and AIM Properties

Table S1. Selected calculated and crystallographically determined bond lengths (\AA), Mayer bond orders, and AIM properties for borohydride complexes [(dmpe) $\left.{ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right]$ (3), [(dmpe) $\left.)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4), and $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right](5)$. b.o. $=$ bond order, $\delta=$ bond delocalization index, bpl $=$ bond path length, $\rho=$ electron density, $\nabla^{2} \rho=$ Laplacian of the electron density, $G=$ gradient kinetic energy density, $V=$ potential energy density, $H=$ total energy density of Cremer and Kraka, $\varepsilon=$ ellipticity. H_{b} refers to the $\mathrm{Mn} \underline{H}_{2} \mathrm{~B}$ environments.

			3	4	5
$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{\Sigma} \end{aligned}$		d(XRD)	1.76(4), 1.78(4)	1.66(3), 1.71(2)	1.69(4), 1.72(4)
		d(DFT)	1.69, 1.70	1.68, 1.68	1.71, 1.71
		Mayer b.o.	0.48, 0.48	0.54, 0.54	0.45, 0.45
		δ	0.476, 0.477	0.494, 0.496	0.452, 0.453
		bpl	1.81, 1.81	1.75, 1.76	1.78, 1.78
		ρ	0.0833, 0.0836	0.0842, 0.0834	0.0782, 0.0782
		$\nabla^{2} \rho$	0.225, 0.228	0.242, 0.248	0.237, 0.237
		$G(a u)$	0.0831, 0.0839	0.0860, 0.0878	0.0806, 0.0806
		V (au)	-0.110, -0.111	-0.112, -0.114	-0.102, -0.102
		H (au)	-0.0268, -0.0269	-0.0256, -0.0257	-0.0213, -0.0213
		ε	1.00, 1.01	0.578, 0.584	0.482, 0.482
$\begin{aligned} & \underset{1}{ \pm} \\ & \infty \\ & \hline \end{aligned}$		d(XRD)	1.31(4), 1.34(4)	1.25(2), 1.31(2)	1.19(4), 1.24(3)
		d(DFT)	1.32, 1.32	1.34, 1.34	1.32, 1.32
		Mayer	0.55, 0.55	0.44, 0.44	0.48, 0.48
		δ	0.418, 0.419	0.389, 0.393	0.396, 0.396
		bpl	1.34, 1.34	1.36, 1.36	1.33, 1.33
		ρ	0.127, 0.127	0.122, 0.122	0.126, 0.126
		$\nabla^{2} \rho$	-0.152, -0.152	-0.151, -0.153	-0.156, -0.156
		G (au)	0.0664, 0.0665	0.0603, 0.0607	0.0655, 0.0655
		V (au)	-0.171, -0.171	-0.159, -0.159	-0.170, -0.170
		H (au)	-0.104, -0.105	-0.0985, -0.0986	-0.104, -0.104
		ε	0.121, 0.121	0.121, 0.124	0.123, 0.123
		d(XRD)	1.18(4), 1.19(5)	-	-
		d(DFT)	1.21, 1.22	-	-
		Mayer	0.81, 0.81	-	-
		δ	0.592, 0.593	-	-
		bpl	1.21, 1.22	-	-
		ρ	0.169, 0.169	-	-
		$\nabla^{2} \rho$	-0.336, -0.337	-	-
		G (au)	0.0923, 0.0923	-	-
		V (au)	-0.269, -0.269	-	-
		H (au)	-0.176, -0.177	-	-
		ε	0.0940, 0.0948	-	-
$\begin{aligned} & \infty \\ & i \\ & \sum \\ & \sum \end{aligned}$		d(XRD)	2.170(4)	2.206(2)	2.245(3)
		d(DFT)	2.13	2.17	2.22
		Mayer	0.43	0.43	0.35
		δ	0.230	0.213	0.188
		ρ	0.0789	0.0752	0.0702
		$\nabla^{2} \rho$	0.134	0.138	0.147
		G (au)	0.0640	0.0614	0.0587
		V (au)	-0.0945	-0.0884	-0.0808
		H (au)	-0.0305	-0.0270	-0.0221
		ε	-4.27	-3.09	-2.65

Table S2. Selected calculated and crystallographically determined angles (${ }^{\circ}$. cent. $\mathrm{BR}_{2}=$ centroid between the two terminal substituents on boron.

			3	4	5
$\frac{\frac{\tilde{v}}{00}}{\frac{0}{4}}$	$\mathrm{H}_{\mathrm{b}}-\mathrm{Mn}-\mathrm{H}_{\mathrm{b}}$	XRD	75(2)	70(1)	65(2)
		DFT	76.4	76.5	73.0
	$\mathrm{H}_{\mathrm{b}}-\mathrm{B}-\mathrm{H}_{\mathrm{b}}$	XRD	109(2)	99(1)	97(2)
		DFT	105.3	101.7	100.3
	Mn-B-R	XRD	120(2), 127(2)	126.9(1), 128.2(1)	123.2(2), 124.1(2)
	Mn-b-R	DFT	124.0, 124.4	127.1, 127.6	123.6, 123.6
	n	XRD	173.6	178.7	179.4
	-B-(cent.BR2)	DFT	179.7	179.3	180.0
	plane($\left.\mathrm{H}_{\mathrm{b}}-\mathrm{Mn}-\mathrm{H}_{\mathrm{b}}\right) /$	XRD	8.3	3.5	0.2
	plane $\left(\mathrm{H}_{\mathrm{b}}-\mathrm{B}-\mathrm{H}_{\mathrm{b}}\right)$	DFT	0.5	0.4	0.0

Tables of Crystal Data and Crystal Structure Refinement

Table S3. Crystal and structure refinement data for $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH} \mathrm{H}_{2}\right]$ (3).

Identification code	MnBH4
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{BMnP}_{4}$
Formula weight	370.04
Temperature/K	100
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.8683(5)
b/Å	11.8704(5)
c/Å	28.4192(14)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/A ${ }^{3}$	4003.7(3)
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.228
μ / mm^{-1}	0.965
F(000)	1584.0
Crystal size/mm ${ }^{3}$	$0.47 \times 0.383 \times 0.144$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 3.432$ to 60.978	
Index ranges	$-16 \leq h \leq 15,-16 \leq k \leq 16,-40 \leq 1 \leq 35$
Reflections collected	35368
Independent reflections	$6389\left[\mathrm{R}_{\text {int }}=0.0507, \mathrm{R}_{\text {sigma }}=0.0424\right]$
Data/restraints/parameters	6389/2/184
Goodness-of-fit on F^{2}	1.201
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0557, \mathrm{wR}_{2}=0.1282$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0596, \mathrm{wR}_{2}=0.1299$
Largest diff. peak/hole / e \AA^{-3}	1.29/-0.56

Table S4. Crystal and structure refinement data for $\left[(\text { dmpe })_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4).

Identification code	MnH_9BBN
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{48} \mathrm{BMnP}_{4}$
Formula weight	478.21
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	11.3252(7)
b/Å	14.1954(9)
c/Å	16.8724(10)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	103.169(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	2641.2(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.203
μ / mm^{-1}	0.746
F(000)	1032.0
Crystal size/mm ${ }^{3}$	$0.456 \times 0.372 \times 0.22$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 5.74$ to 65.55	
Index ranges	$-17 \leq h \leq 16,0 \leq k \leq 21,0 \leq 1 \leq 25$
Reflections collected	9679
Independent reflections	$9679\left[\mathrm{R}_{\text {int }}=\right.$?, $\left.\mathrm{R}_{\text {sigma }}=0.0401\right]$
Data/restraints/parameters	9679/0/243
Goodness-of-fit on F^{2}	1.047
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0337, w \mathrm{R}_{2}=0.0713$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0490, w R_{2}=0.0775$
Largest diff. peak/hole / e \AA^{-3}	0.48/-0.38

Table S5. Crystal and structure refinement data for $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right]$ (5).

Identification code	MnH_BMes2
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{BMnP}_{4}$
Formula weight	606.37
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	10.068(3)
b/Å	12.286(3)
c/Å	13.967(3)
$\alpha /{ }^{\circ}$	90.611(4)
$\beta /{ }^{\circ}$	101.870(5)
$\gamma /{ }^{\circ}$	104.056(5)
Volume/Å ${ }^{3}$	1636.7(7)
Z	2
$\rho_{\text {calcg }} \mathrm{g} / \mathrm{cm}^{3}$	1.230
μ / mm^{-1}	0.617
F(000)	652.0
Crystal size/mm ${ }^{3}$	$0.198 \times 0.164 \times 0.072$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 2.986$ to 56.87	
Index ranges	$-13 \leq h \leq 12,-16 \leq k \leq 16,0 \leq 1 \leq 18$
Reflections collected	7863
Independent reflections	7863 [$\mathrm{inch}^{\text {int }}=$?, $\left.\mathrm{R}_{\text {sigma }}=0.0562\right]$
Data/restraints/parameters	7863/0/348
Goodness-of-fit on F^{2}	1.045
Final R indexes [$1>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0468, \mathrm{wR}_{2}=0.0885$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0798, w \mathrm{R}_{2}=0.0995$
Largest diff. peak/hole / e \AA^{-3}	0.55/-0.44

Table S6. Crystal and structure refinement data for trans,trans-[\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe $\left.)\right]$ (trans,trans-6).

Identification code	MnHdmpe_bridging_trans
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{82} \mathrm{Mn}_{2} \mathrm{P}_{10}$
Formula weight	862.53
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	13.8329(9)
b/Å	14.9650(10)
c/Å	11.0995(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	102.760(3)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2241.0(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.278
μ / mm^{-1}	0.940
F(000)	924.0
Crystal size/mm ${ }^{3}$	$0.437 \times 0.361 \times 0.238$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.444$ to 80.486	
Index ranges	$-25 \leq h \leq 25,-27 \leq k \leq 27,-20 \leq \mathrm{l} \leq 20$
Reflections collected	106256
Independent reflections	$14051\left[\mathrm{R}_{\text {int }}=0.0441, \mathrm{R}_{\text {sigma }}=0.0286\right]$
Data/restraints/parameters	14051/0/204
Goodness-of-fit on F^{2}	1.034
Final R indexes [l>=2 $\sigma(1)$]	$\mathrm{R}_{1}=0.0278, w \mathrm{R}_{2}=0.0612$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0418, \mathrm{wR}_{2}=0.0672$
Largest diff. peak/hole / e \AA^{-3}	0.61/-0.33

Table S7. Crystal and structure refinement data for cis,cis-[\{(dmpe) $\left.\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu-\mathrm{dmpe})\right]$ (cis,cis-6).

Identification code	MnHdmpe_bridging_cis
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{82} \mathrm{Mn}_{2} \mathrm{P}_{10}$
Formula weight	862.53
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	15.392(2)
b/Å	10.4309(14)
c/Å	28.529(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	98.652(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	4528.2(10)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.265
μ / mm^{-1}	0.931
F(000)	1848.0
Crystal size/mm ${ }^{3}$	$0.27 \times 0.143 \times 0.125$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 2.676$ to 58.4	
Index ranges	$-21 \leq h \leq 21,-14 \leq k \leq 14,-39 \leq 1 \leq 38$
Reflections collected	56722
Independent reflections	$12351\left[\mathrm{R}_{\text {int }}=0.0898, \mathrm{R}_{\text {sigma }}=0.0918\right]$
Data/restraints/parameters	12351/870/486
Goodness-of-fit on F^{2}	1.019
Final R indexes [l>=2 ${ }^{(1)}$]	$\mathrm{R}_{1}=0.1092, \mathrm{wR}_{2}=0.2817$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1648, \mathrm{wR}_{2}=0.3234$
Largest diff. peak/hole / e \AA^{-3}	2.30/-1.35

Table S8. Crystal and structure refinement data for trans-[(dmpe) ${ }_{2} \mathrm{MnH}^{\left.\left(\mathrm{k}_{1}-\mathrm{dmpe}\right)\right]}$ (trans-7).

Identification code	MnHdmpe3_trans
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{49} \mathrm{MnP}_{6}$
Formula weight	506.36
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a/Å	20.562(4)
b/Å	9.4569(18)
c/Å	28.035(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.843(4)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	5451.0(18)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.234
μ / mm^{-1}	0.839
F(000)	2176.0
Crystal size/mm ${ }^{3}$	$0.020 \times 0.020 \times 0.020$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 3.492$ to 56.508	
Index ranges	$-27 \leq h \leq 27,-12 \leq k \leq 12,-37 \leq 1 \leq 37$
Reflections collected	85573
Independent reflections	26856 [$\left.\mathrm{R}_{\text {int }}=0.2398, \mathrm{R}_{\text {sigma }}=0.5649\right]$
Data/restraints/parameters	26856/910/959
Goodness-of-fit on F^{2}	0.644
Final R indexes [l>=2 σ (1]]	$\mathrm{R}_{1}=0.0888, w \mathrm{R}_{2}=0.0771$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2458, w \mathrm{R}_{2}=0.1006$
Largest diff. peak/hole / e \AA^{-3}	0.98/-0.78
Flack parameter	0.46(3)

Table S9. Crystal and structure refinement data for trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8).

Identification code	MnHPMe3_trans
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{42} \mathrm{MnP}_{5}$
Formula weight	432.27
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	9.2251(10)
b/Å	9.4251(10)
c/Å	15.1932(16)
$\alpha /{ }^{\circ}$	91.032(3)
$\beta /{ }^{\circ}$	106.889(3)
$\mathrm{V} /{ }^{\circ}$	113.056(3)
Volume/Å ${ }^{3}$	1150.0(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.248
μ / mm^{-1}	0.916
F(000)	464.0
Crystal size/mm ${ }^{3}$	$0.02 \times 0.02 \times 0.01$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 2.834$ to 52.618	
Index ranges	$-11 \leq h \leq 11,-11 \leq k \leq 11,-18 \leq \mathrm{l} \leq 18$
Reflections collected	19746
Independent reflections	$4659\left[\mathrm{R}_{\text {int }}=0.1174, \mathrm{R}_{\text {sigma }}=0.1203\right]$
Data/restraints/parameters	4659/0/205
Goodness-of-fit on F^{2}	1.034
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0674, \mathrm{R}_{2}=0.1023$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1237, w R_{2}=0.1159$
Largest diff. peak/hole / e \AA^{-3}	0.85/-0.75

Selected NMR Spectra for Complexes 3-8

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right](3)$ in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S4. Expanded $\mathrm{B} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right](3)$ in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S5. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of [(dmpe) ${ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}$] (3) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates a peak from n-hexane.

Figure S6. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right]$ (3) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S7. Expanded BH region of an overlay of the ${ }^{1} \mathrm{H}$ (blue) and ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ (red) NMR spectra of $\left[(\text { dmpe })_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right](3)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S8. Expanded $\mathrm{Mn} \underline{H}$ region of an overlay of the ${ }^{1} \mathrm{H}$ (blue) and ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ (red) NMR spectra of $\left[(d m p e)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right.$] (3) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S9. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right](3)$ in d_{8}-toluene ($192 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S10. Expanded signal-containing region of the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of [(dmpe) $\left.{ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH} \mathrm{H}_{2}\right]$ (3) in d_{8}-toluene ($192 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S11. $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH} \mathrm{H}_{2}\right](3)$ in d_{8}-toluene ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S12. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right]$ (3) in d_{8}-toluene ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right](3)$ in d_{8}-toluene ($243 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S15. Expanded high frequency portion of the alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of [(dmpe) $)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}$] (4) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S16. Expanded low frequency portion of the alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of [(dmpe) $\left.)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S17. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H} N M R$ spectrum of [(dmpe) ${ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}$] (4) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S18. Expanded $\mathrm{Mn} \underline{H}$ region of an overlay of the ${ }^{1} \mathrm{H}$ (blue) and ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ (red) NMR spectra of [(dmpe) ${ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}$] (4) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S19. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4) in $\mathrm{C}_{6} \mathrm{D}_{6}(192 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S20. Expanded signal-containing region of the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right]$ (4) in $\mathrm{C}_{6} \mathrm{D}_{6}(192 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S22. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S23. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BC}_{8} \mathrm{H}_{14}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(243 \mathrm{MHz}, 298 \mathrm{~K})$. * indicates a signal from an impurity.

Figure S24. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right]$ (5) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S25. Expanded aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right](5)$ in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S26. Expanded high frequency portion of the alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of [(dmpe) $)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}$] (5) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S27. Expanded low frequency portion of the alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of [(dmpe) $)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}$] (5) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S28. Expanded MnH region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right]$ (5) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S29. Expanded $\mathrm{Mn} \underline{H}$ region of an overlay of the ${ }^{1} \mathrm{H}$ (blue) and ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ (red) NMR spectra of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right.$] (5) in d_{8}-toluene ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S30. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}{ }_{2}\right](5)$ in d_{8}-toluene ($192 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S31. Expanded signal-containing region of the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}{ }_{2}\right]$ (5) in d_{8}-toluene ($192 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S32. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right](5)$ in d_{8}-toluene ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S33. Expanded aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right](5)$ in d_{8}-toluene ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S34. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}{ }_{2}\right](5)$ in d_{8}-toluene ($151 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S35. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BMes}_{2}\right](5)$ in d_{8}-toluene ($243 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S36. ${ }^{1} \mathrm{H}$ NMR spectrum of trans, trans-[\{(dmpe) $\left.)_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}$, 298 K).

Figure S37. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans, trans-[\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S38. Expanded MnH region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans, trans-[\{(dmpe) $\left.)_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans, trans-[\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe) $]$ (trans,trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($126 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S40. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans, trans-[\{(dmpe) $\left.)_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}(126 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S41. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans,trans-[\{(dmpe) $\left.)_{2} \mathrm{MnH}\right\}_{2}\left(\mu\right.$-dmpe)] (trans,trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($243 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S42. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-containing $\left[\left\{(\mathrm{dmpe})_{2} \mathrm{MnH}\right\}_{2}(\mu-\mathrm{dmpe})\right]$ (ciscontaining 6) generated by exposing a solution of trans,trans-[\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe)] (trans,trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($500 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S43. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-containing $\left[\left\{(\mathrm{dmpe})_{2} \mathrm{MnH}\right\}_{2}(\mu\right.$-dmpe)] (cis-containing 6) generated by exposing a solution of trans,trans$\left[\left\{(\mathrm{dmpe})_{2} \mathrm{MnH}\right\}_{2}(\mu\right.$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours (500 MHz , 298 K). * indicates peaks from trans,trans-6.

Figure S44. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-containing $\left[\left\{(\mathrm{dmpe})_{2} \mathrm{MnH}\right\}_{2}(\mu\right.$-dmpe $\left.)\right]$ (cis-containing 6) generated by exposing a solution of trans,trans$\left[\left\{(\mathrm{dmpe})_{2} \mathrm{MnH}\right\}_{2}(\mu\right.$-dmpe $\left.)\right]$ (trans, trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours (500 MHz , 298 K). Mn \underline{H} indicates a peak from cis-containing 6, and * indicates a peak from trans,trans-6.

Figure S45. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis-containing [\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe)] (ciscontaining 6) generated by exposing a solution of trans,trans-[\{(dmpe) $\left.\left.)_{2} \mathrm{MnH}\right\}_{2}(\mu-\mathrm{dmpe})\right]$ (trans,trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($202 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans, trans6, and \dagger indicates a peak from an impurity of trans-7.

Figure S46. Zoomed in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution cis-containing [\{(dmpe) $\left.)_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe)] (ciscontaining 6) generated by exposing a solution of trans,trans-[\{(dmpe) $\left.{ }_{2} \mathrm{MnH}\right\}_{2}(\mu$-dmpe)] (trans,trans-6) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($202 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans, trans6, and \dagger indicates a peak from an unidentified impurity.

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) ${ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}\right.$-dmpe)] (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S48. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) $)_{2} \mathrm{MnH}\left(\kappa_{1}-\right.$ dmpe)] (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S49. Expanded MnH region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S50. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]($ trans -7$)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S51．Expanded high frequency portion of the alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans－ ［（dmpe）${ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}\right.$－dmpe）］（trans－7）in $\mathrm{C}_{6} \mathrm{D}_{6}(151 \mathrm{MHz}, 298 \mathrm{~K})$ ．

Figure S52．Expanded low frequency portion of the alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans－ ［（dmpe）${ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)$ ］（trans－7）in $\mathrm{C}_{6} \mathrm{D}_{6}(151 \mathrm{MHz}, 298 \mathrm{~K})$ ．

Figure S53. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{k}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}(243 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S54. Expanded $\mathrm{Mn} \underline{P}$ region of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}(243 \mathrm{MHz}, 298 \mathrm{~K})$. * indicates peaks from an impurity of cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ (cis-7).

Figure S56. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{\kappa}_{1}-\mathrm{dmpe}\right)\right]$ (cis-7) generated by exposing a solution of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($500 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S57. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ (cis-7) generated by exposing a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{k}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($500 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans-7.

Figure S58. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{k}_{1}-\mathrm{dmpe}\right)\right]$ (cis-7) generated by exposing a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{k}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($500 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates a peak from trans-7.

Figure S59．${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis－［（dmpe）$\left.{ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$（cis－7）generated by exposing a solution of trans－［（dmpe）$\left.)_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$（trans－7）in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours（ $202 \mathrm{MHz}, 298 \mathrm{~K}$ ）．† indicates peaks from cis－7，and＊indicates peaks from trans－7．

N
O
i
\circ
$\stackrel{y}{⿳ 亠 丷 厂 犬}$
i

Figure S60．Expanded $\mathrm{Mn} \underline{P}$ region of the ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis－［（dmpe）$\left.{ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$（cis－7）generated by exposing a solution of trans－［（dmpe）$\left.{ }_{2} \mathrm{MnH}\left(\mathrm{K}_{1}-\mathrm{dmpe}\right)\right]$ （trans－7）in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours（ $202 \mathrm{MHz}, 298 \mathrm{~K}$ ）．＊indicates peaks from trans－7，\dagger indicates a peak from cis－containing 6 ，and \ddagger indicates a peak from an unidentified impurity．

Figure S61. Expanded free phosphine region of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of a solution containing cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{\kappa}_{1}-\mathrm{dmpe}\right)\right]$ (cis-7) generated by exposing a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{\kappa}_{1}-\mathrm{dmpe}\right)\right]$ (trans-7) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to light at room temperature for 25 hours ($202 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates a peak from trans- 7 and \ddagger indicates a peak from an unidentified impurity.

Figure S62. ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S63. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) $)_{2} \mathrm{MnH}_{\left.\left(\mathrm{PMe}_{3}\right)\right]}$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S64. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}(126 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S66. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ ($126 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S67. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}(243 \mathrm{MHz}, 298 \mathrm{~K})$. * indicates peaks from an impurity of cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8).

Figure S68. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 11 days ($600 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S69. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis$\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 11 days ($600 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans-8 and \dagger indicates a peak from PMe_{3}.

Figure S70. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing cis$\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 11 days ($600 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates a peak from trans-8.

Figure S71. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 10 days ($126 \mathrm{MHz}, 298 \mathrm{~K}$).

Figure S72. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 10 days ($126 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans-8.

Figure S73. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 11 days ($243 \mathrm{MHz}, 298 \mathrm{~K}$). + indicates a peaks from PMe_{3}.

Figure S74. Expanded $\mathrm{Mn} \underline{P}$ region of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing cis[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (cis-8) generated from leaving a solution of trans-[(dmpe) $\left.)_{2} \mathrm{MnH}\left(\mathrm{PMe}_{3}\right)\right]$ (trans-8) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature (mix of light and dark) for 11 days ($243 \mathrm{MHz}, 298 \mathrm{~K}$). * indicates peaks from trans-8.

Selected NMR Spectra for Deuteration of $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}^{\left(\mu-\mathrm{H}_{2}\right.} \mathbf{2} \mathrm{BH}_{2}\right](3)$

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing [(dmpe) $\left.)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}\right]$ (3) and D_{2} immediately (blue) and after 12 h at $90^{\circ} \mathrm{C}$ (red) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S76. Expanded $\mathrm{B} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing [(dmpe) ${ }_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} B \mathrm{H}_{2}$] (3) and D_{2} immediately (blue) and after 12 h at $90^{\circ} \mathrm{C}$ (red) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S77.Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing [(dmpe) ${ }_{2} \mathrm{Mn}(\mu$ $\mathrm{H})_{2} \mathrm{BH}_{2}$] (3) and D_{2} immediately (blue) and after 12 h at $90^{\circ} \mathrm{C}$ (red) in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S78. Expanded $\mathrm{Mn} \underline{H}$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing [(dmpe) $)_{2} \mathrm{Mn}(\mu-\mathrm{H})_{2} \mathrm{BH}_{2}$] (3) and D_{2} immediately (blue) and after 12 h at $90{ }^{\circ} \mathrm{C}(\mathrm{red})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(600 \mathrm{MHz}$, $298 \mathrm{~K})$.

Experimental Details and Selected NMR Spectra of Intermediates in the Reactions of $\left[(\mathrm{dmpe})_{2} \mathrm{MnH}_{\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \text { (1) with } 9-\mathrm{BBN} \text { or } \mathrm{HBMes}_{2}}^{2}\right.$

Reactions to generate the intermediates in the synthesis of 4. a) $3.6 \mathrm{mg}(0.030 \mathrm{mmol})$ of 9-BBN and $11.3 \mathrm{mg}(0.029 \mathrm{mmol})$ of $\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](1)$ were dissolved in approx. 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ and the resulting mixture was left for 7 days at room temperature and analyzed in situ by NMR spectroscopy indicating a $1.3: 1.0: 2.1$ ratio of $\mathbf{1 : 4} \mathbf{4}$: intermediates. b) $6.5 \mathrm{mg}(0.05 \mathrm{mmol})$ of $9-\mathrm{BBN}$ and 10.3 mg $(0.27 \mathrm{mmol})$ of $\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (1) were dissolved in approx. 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ and the resulting mixture was left for 3 days at room temperature and analyzed in situ by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicating a $1.0: 2.5: 1.5$ ratio of $\mathbf{1 : 4} \mathbf{4}$: intermediates. A major ($>95 \%$) and minor ($<5 \%$) intermediate were both observed in solution. Selected NMR data for the major species: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{2 9 8} \mathrm{~K}\right): \delta 2.68$, 2.60, 2.05, 0.53, $0.31(5 \times m, 1 \mathrm{H}), 2.46(\mathrm{~m}, 4 \mathrm{H}),-1.44$ (br. s, 1 H$),-13.14$ (br. s, $1 \mathrm{H}, \mathrm{Mn} \underline{H}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 192 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta-15.49$ (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 243 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 85.83,76.47,64.94,57.83$ $(4 \times s, 1 P)$. Selected NMR data for the minor species: ${ }^{31}$ P\{ $\left.{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 243 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-5.64$ (s).

Reactions to generate the intermediates in the synthesis of $5.13 .0 \mathrm{mg}(0.052 \mathrm{mmol})$ of HBMes_{2} and $10.0 \mathrm{mg}(0.026 \mathrm{mmol})$ of $\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](\mathbf{1})$ were dissolved in approx. 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$, and the resulting mixture was heated for 1.5 h at $60^{\circ} \mathrm{C}$. The resulting solution was analyzed in situ by NMR spectroscopy, indicating a 2.3 : 1.7:1.0 ratio of $1: 5$: intermediates. A major ($>95 \%$) and minor (<5 \%) intermediate were both observed in solution. Selected NMR data for the major species: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{C}_{6} \mathbf{D}_{6}$, $600 \mathrm{MHz}, 298 \mathrm{~K}$): 4.12 (app. t, $2 \mathrm{H}, \mathrm{J} 2.2 \mathrm{~Hz}$), 1.96 (q, $2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 7.1 \mathrm{~Hz}$), -13.03 (t, 1H, J J, $73.7 \mathrm{~Hz}, \mathrm{MnH}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathbf{2 4 3} \mathbf{~ M H z}, 298 \mathrm{~K}\right): \delta-4.01$ (s). Selected NMR data for the minor species: ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 243 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 73.27$ (br. s).

Figure S79. Left: (boro)hydride region of the ${ }^{1} \mathrm{H}$ NMR spectra, and right: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, for reactions of trans-[(dmpe) $\left.{ }_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (1) with (bottom) $9-\mathrm{BBN}$ or (top) HBMes_{2} before completion. ${ }^{*}=$ peaks attributed to the dominant intermediate isomer, and $\dagger=$ peaks attributed to the minor intermediate isomer. $\mathrm{C}_{6} \mathrm{D}_{6}, 600 \mathrm{MHz}, 298 \mathrm{~K}$.

Experimental Details and Selected NMR Spectra of Solutions Generated by Hydroboration of Ethylene by HBR_{2}

Hydroboration of ethylene by 9-BBN and $\mathbf{H B M e s}_{2}$ (in order to determine whether this reaction will take place under the conditions used to synthesize $\mathbf{3}$ and $\mathbf{4}$, and to allow conclusive identification of the reaction byproducts $\mathrm{EtBC}_{8} \mathrm{H}_{14}$ and EtBMes ${ }_{2}$). (a) Approximately 10 mg of $9-\mathrm{BBN}$ was dissolved in roughly 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was freeze/pump/thaw cycled in a J. Young NMR tube three times and then was placed under 1 atm of ethylene at $-95{ }^{\circ} \mathrm{C}$, sealed, and warmed to room temperature. 90% conversion of $\mathrm{HBC}_{8} \mathrm{H}_{14}$ to $\mathrm{EtBC}_{8} \mathrm{H}_{14}$ was observed by NMR spectroscopy after heating at $60{ }^{\circ} \mathrm{C}$ for 1 h , and the resulting solution of $\mathrm{EtBC}_{8} \mathrm{H}_{14}$ was analyzed by NMR spectroscopy in situ. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{8} \underline{H}_{14}\right), 1.76$ (br. $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{8} \underline{H}_{14}\right), 1.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{8} \underline{H}_{14}\right), 1.35(\mathrm{q}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{8} \underline{H}_{14}\right) 1.08\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, $192 \mathrm{MHz}, 298 \mathrm{~K}): \delta 87.41$ (s). $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 151 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 33.39,23.63,8.41(3 \times \mathrm{s}), 31.13$, 20.23 ($2 \times \mathrm{br} . \mathrm{s}$). (b) Approximately 10 mg of BHMes_{2} was dissolved in roughly 0.6 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The reaction mixture was freeze/pump/thaw cycled in a J. Young NMR tube three times and then was placed under 1 atm of ethylene at $-95^{\circ} \mathrm{C}$, sealed, and warmed to room temperature. 99% conversion of HBMes_{2} to EtBMes_{2} was observed by NMR spectroscopy after heating at $60^{\circ} \mathrm{C}$ for 1 h , and the resulting solution of EtBMes ${ }_{2}$ was analyzed by NMR spectroscopy in situ. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{\mathbf{6}}, \mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{2 9 8} \mathbf{K}\right): \delta 6.74$ $(\mathrm{s}, 4 \mathrm{H}, m), 2.23\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{o}-\mathrm{CH}_{3}\right), 2.15\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{CH}_{3}\right), 1.93\left(\mathrm{q}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}} 7.5 \mathrm{~Hz}, \mathrm{C}_{2} \underline{C H}_{3}\right), 1.15\left(\mathrm{t}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 192 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 84.02$ (br. s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 151 \mathrm{MHz}\right.$, 298 K): $\delta 139.13,138.34,128.98,22.91,21.18,9.38(6 \times$ s), 26.55 (br. s).

Figure S80. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing $\mathrm{EtBC}_{8} \mathrm{H}_{14}$, observed in situ from the reaction of $9-\mathrm{BBN}$ with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S81. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing $\mathrm{EtBC}_{8} \mathrm{H}_{14}$, observed in situ from the reaction of 9-BBN ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60{ }^{\circ} \mathrm{C}(600 \mathrm{MHz}, 298 \mathrm{~K}) .{ }^{*}$ indicates peaks from residual 9-BBN.

Figure S82. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing $\mathrm{EtBC}_{8} \mathrm{H}_{14}$, observed in situ from the reaction of $9-B B N$ with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(192 \mathrm{MHz}, 298 \mathrm{~K})$. * indicates a peak from residual 9-BBN, and \dagger indicates a peak from an impurity present in the $9-B B N$ starting material.

Figure S83. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing $\mathrm{EtBC}_{8} \mathrm{H}_{14}$, observed in situ from the reaction of 9-BBN with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S84. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing $\mathrm{EtBC}_{8} \mathrm{H}_{14}$, observed in situ from the reaction of 9-BBN with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60{ }^{\circ} \mathrm{C}(151 \mathrm{MHz}, 298 \mathrm{~K})$. * indicates peaks from residual 9-BBN.

Figure S85. ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing EtBMes $_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S86. Expanded aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing EtBMes ${ }_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S87. Expanded alkyl region of the ${ }^{1} \mathrm{H}$ NMR spectrum of a solution containing EtBMes ${ }_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S88. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing EtBMes $_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(192 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S89. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing EtBMes ${ }_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60{ }^{\circ} \mathrm{C}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S90. Expanded aromatic region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing EtBMes ${ }_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S91. Expanded alkyl region of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a solution containing EtBMes ${ }_{2}$, observed in situ from the reaction of HBMes_{2} with ethylene for 1 h in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $60^{\circ} \mathrm{C}(151 \mathrm{MHz}, 298 \mathrm{~K})$.

Selected NMR Spectra for Determining the Mechanism of the Reaction of [(dmpe) $\left.\left.{ }_{2} \mathbf{M n H}_{1} \mathrm{C}_{2} \underline{H}_{4}\right)\right]$ (1) with HBMes $_{2}$

Figure S92. Regions of the ${ }^{n} H$ NMR spectra ($n=1 ; 500$ or $600 \mathrm{MHz}, \mathrm{n}=2 ; 77 \mathrm{MHz}$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K containing the $\underline{E t B M e s}_{2}$ (left) and metal hydride/borohydride (right) environments for, from bottom to top, ${ }^{1} \mathrm{H}$ NMR for the reaction of $2 \mathrm{DBMes}_{2}$ with $\left[(\mathrm{dmpe})_{2} \mathrm{MnH}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right](1)$ after heating overnight at $60{ }^{\circ} \mathrm{C}$, ${ }^{2} \mathrm{H}$ NMR for the reaction of $2 \mathrm{DBMes}_{2}$ with $\mathbf{1}$ after heating overnight at $60^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR for the reaction of $2 \mathrm{HBMes}_{2}$ with 1 after heating overnight at $60^{\circ} \mathrm{C}$, and ${ }^{1} \mathrm{H}$ NMR for $\mathrm{EtBMes}_{2} .{ }^{*}$ is from an impurity in the $\mathrm{C}_{6} \mathrm{D}_{6}$ used. Spectra indicate that the products of the reaction of $\mathbf{1}$ with two equivalents of DBMes_{2} are fully protonated EtBMes_{2} and $\left[(\mathrm{dmpe})_{2} \mathrm{Mn}(\mu-\mathrm{D})_{2} \mathrm{BMes}_{2}\right]\left(d_{2}-5\right)$.

References

1. (a) ADF2010, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; C. F. Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391-403; (b) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967.
2. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
3. (a) E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610; (b) E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1994, 101, 9783-9792; (c) E. van Lenthe, J. G. Snijders and E. J. Baerends, J. Chem. Phys., 1996, 105, 6505-6516; (d) E. van Lenthe, R. van Leeuwen, E. J. Baerends and J. G. Snijders, Int. J. Quantum Chem., 1996, 57, 281-293; (e) E. van Lenthe, A. Ehlers and E. J. Baerends, J. Chem. Phys., 1999, 110, 8943-8953.
4. (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; (b) S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
5. (a) A. D. Becke, J. Chem. Phys., 1988, 88, 2547-2553; (b) M. Franchini, P. H. T. Philipsen and L. Visscher, J. Comput. Chem., 2013, 34, 1819-1827.
6. (a) A. Bérces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone and T. Ziegler, Comput. Phys. Commun., 1997, 100, 247-262; (b) H. Jacobsen, A. Bérces, D. P. Swerhone and T. Ziegler, Comput. Phys. Commun., 1997, 100, 263-276; (c) S. K. Wolff, Int. J. Quantum Chem., 2005, 104, 645-659.
7. The SCANFREQ command rescans a specific range of frequencies along a normal mode numerically as described in the ADF manual: https://www.scm.com/doc/ADF/Input/Frequencies.html\#scanning-a-range-of-frequencies.
Reference for numeric frequency calculations is as follows; L. Fan and T. Ziegler, J. Chem. Phys., 1992, 96, 9005-9012.
8. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990.
9. (a) J. I. Rodríguez, R. F. W. Bader, P. W. Ayers, C. Michel, A. W. Götz and C. Bo, Chem. Phys. Lett., 2009, 472, 149-152; (b) J. I. Rodríguez, A. M. Köster, P. W. Ayers, A. Santos-Valle, A. Vela and G. Merino, J. Comput. Chem., 2009, 30, 1082-1092; (c) J. I. Rodríguez, J. Comput. Chem., 2013, 34, 681-686; (d) P. W. Ayers and S. Jenkins, Computational and Theoretical Chemistry, 2015, 1053, 112-122; (e) V. Tognetti and L. Joubert, Physical Chemistry Chemical Physics, 2014, 16, 1453914550; (f) Y. A. Abramov, Acta Crystallogr., Sect. A: Found. Crystallogr., 1997, A53, 264-272; (g) X. Fradera, M. A. Austen and R. F. W. Bader, The Journal of Physical Chemistry A, 1999, 103, 304314; (h) J. Poater, M. Solà, M. Duran and X. Fradera, Theoretical Chemistry Accounts, 2002, 107, 362-371.
