Supporting Information

Self-assembly of tetranuclear 3d-4f helicates as highly efficient

catalysts for CO₂ cycloaddition reactions under mild conditions

Huan Yang^a, Guoshu Gao^a, Wanmin Chen^a, Li Wang^{*b}, and Weisheng Liu^{*a}

^a Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

^b College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, P.R. China

Contents

- 1. General
- 2. Structure of ligand and the classical N2O2 pocket
- 3. Mass Spectra and NMR spectra of the H₂L
- 4. IR Spectra of ligand and complexes
- 5. TGA curves of complexes
- 6. Crystallography data
- 7. Wires/Sticks representation of complex in crystal cell
- 8. Catalystic performance
- 9. NMR spectra for substrate extension experiments under 120 °C
- 10. NMR spectra for substrate extension experiments under 80 °C
- **11. Notes and references**

1. Characterization data of H₂L and catalysts

Materials and Methods. Chemicals were purchased from commercial sources and used without further purification. The infrared spectra were recorded on a Bruker VERTEX 70 FT-IR spectrometer using KBr pellets in the 400-4000 cm⁻¹ region. ¹H and ¹³C NMR spectra were recorded using a JNM-ECS 400M spectrometer using CDCl₃ as a solvent and tetramethylsilane (TMS) as an internal standard. The C, H, and N microanalyses were performed by using a Vario EL cube elemental analyzer. TGA/NETZSCH STA449C instrument for thermogravimetric analysis experiments was carried out under nitrogen atmosphere, the test temperature is from 35 °C to 800 °C with the heating rate of 10 °C min⁻¹. Single-crystal X-ray diffraction data were collected on a Bruker FRAMBO diffractometer (Mo radiation, $\lambda = 0.71073$ Å) at 293 K. Data reduction was accomplished by the Bruker SAINT program. Empirical absorption corrections were carried out on the SADABS program. All the structures were solved by direct methods and refined by a fullmatrix least-squares technique based on F² of the SHELXL 2018 through Olex 2 program. All the non-hydrogen atoms were refined anisotropically. The organic hydrogen atoms were generated geometrically. The specific data of X-ray crystallography and experiment for the crystal are listed in table S1-S4. For details, see the cif date in the supporting part. The CCDC reference numbers of complexes **1-3** are 1942931-1942933.

2. Structure of ligand and the classical N2O2 pocket.

Figure S1. (a) General structure of a symmetrical salen ligand. (b) Amide-functionalized asymmetrical salen ligand in this work.

3. Mass Spectra and NMR spectra of the $\rm H_2L$

Figure S2. Mass Spectrum of H₂L.

Figure S3. ¹H NMR Spectrum of H₂L.

Figure S4. ¹³C NMR Spectrum of H₂L.

4. IR Spectra of ligands and helicates

Figure S5. IR of H_2L and complex 1-3.

5. TGA curves of complexes

Figure S6. TGA curves of complexes 1-3.

6. Single-Crystal X-ray diffraction analysis

Compound	1	2	3			
Empirical formula	$C_{98}H_{123}DyN_{10}O_{15}Zn_3$	$C_{98}H_{123}GdN_{10}O_{15}Zn_3$	$C_{98}H_{123}ErN_{10}O_{15}Zn_3$			
Formula weight	2039.76	2034.52	2044.51			
Т/К	291.73(10)	173.00(10)	295.42(10)			
Crystal system	triclinic	triclinic	triclinic			
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1			
a/Å	15.2010(6)	15.1548(12)	15.2301(4)			
b/Å	19.7221(4)	19.2532(17)	19.7361(5)			
c/Å	19.7307(5)	19.4848(13)	19.7667(6)			
α /°	70.729(2)	72.372(7)	70.414(2)			
<i>в</i> / °	87.962(3)	85.842(6)	87.940(2)			
γ/°	85.124(2)	89.624(7)	85.250(2)			
V/Å ³	5563.4(3)	5403.3(8)	5578.3(3)			
Ζ	2	2	2			
<i>D_{calc}</i> /Mg m ⁻³	1.218	1.282	1.236			
F(000)	2114.0	2162.0	2154.0			
artheta range for data collection	6.546 to 50.02°	6.6 to 52.044°	6.586 to 50.02°			
Data/restraints/parameters	19482/144/1211	21257/80/1204	19441/78/1218			
Goodness-of-fit on F ²	0.850	1.043	1.032			
Final R indices [I>2sigma (I)] ^a	<i>R</i> ₁ =0.0637,	<i>R</i> ₁ =0.0649,	<i>R</i> ₁ =0.0550,			
<i>R</i> indices (all data) ^b	<i>R</i> ₁ =0.1007,	<i>R</i> ₁ =0.1137,	<i>R</i> ₁ =0.0838,			
Largest diff. peak/hole/e. Å ⁻³	1.31/-1.01	1.74/-0.91	1.19/-0.93			
${}^{a}R_{1} = \Sigma F_{o} - F_{c} /\Sigma F_{o} ; {}^{b}wR_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]^{1/2}$						

Table S1. Crystal data and structure refinement parameters for complexes 1-3

Zn ₃ DyL ₄ (1)							
Dy1—Zn2	3.3230 (8)	Dy1-01	2.382 (4)	Zn1—04	1.969 (4)		
Dy1—Zn1	3.3305 (8)	Dy1-04	2.396 (4)	Zn1—N2	1.991 (6)		
Dy1-011	2.289 (5)	Zn2—O6	1.911 (4)	Zn3—09	2.038 (4)		
Dy1-010	2.406 (4)	Zn2—010	1.956 (4)	Zn3—O44	2.090 (7)		
Dy1-07	2.370 (4)	Zn2—01	1.966 (4)	Zn3—N6	2.085 (6)		
Dy1-02	2.291 (4)	Zn2—N4	1.993 (5)	Zn3—012	2.049 (4)		
Dy1—05	2.291 (4)	Zn1—03	1.910 (4)	Zn3—N8	2.076 (6)		
Dy1—08	2.282 (4)	Zn1—07	1.971 (4)				
011—Dy1—010	72.06 (14)	07—Dy1—010	136.23 (15)	05—Dy1—010	73.76 (15)		
011—Dy1—07	77.53 (15)	07—Dy1—01	131.63 (14)	05—Dy1—07	140.39 (14)		
011—Dy1—02	147.74 (15)	07—Dy1—O4	69.86 (14)	05—Dy1—O2	96.42 (17)		
011—Dy1—05	94.72 (17)	02—Dy1—010	140.20 (15)	05—Dy1—01	76.64 (15)		
011—Dy1—01	141.81 (14)	02—Dy1—07	74.61 (16)	05—Dy1—O4	70.54 (14)		
011—Dy1—04	80.01 (16)	02—Dy1—01	70.40 (14)	08—Dy1—07	72.42 (14)		
02—Dy1—04	75.40 (15)	01-Dy1-010	69.80 (14)	08—Dy1—O2	98.53 (16)		
08—Dy1—011	88.17 (16)	01—Dy1—04	128.80 (15)	08—Dy1—05	146.87 (15)		
08-Dy1-010	75.83 (14)	04-Dy1-010	132.03 (14)	08-Dy1-01	80.82 (15)		
08—Dy1—04	142.06 (15)	06—Zn2—01	119.10 (17)	09—Zn3—N6	86.4 (2)		
03—Zn1—04	117.71 (18)	06—Zn2—N4	97.0 (2)	09—Zn3—012	171.2 (2)		
O3—Zn1—N2	96.3 (2)	O1—Zn2—N4	118.8 (2)	09—Zn3—N8	89.8 (2)		
07—Zn1—N2	117.2 (2)	010—Zn2—01	88.62 (18)	N6—Zn3—O44	117.9 (3)		
04—Zn1—07	87.65 (17)	O10—Zn2—N4	120.9 (2)	012—Zn3—044	91.9 (2)		
04—Zn1—N2	123.5 (2)	N8—Zn3—N6	137.5 (3)	012—Zn3—N6	91.4 (2)		
03—Zn1—07	116.4 (2)	N8—Zn3—O44	104.6 (3)	012—Zn3—N8	86.0 (2)		

Table S2. Selected bond lengths (Å) for complexes 1-3

Zn ₃ GdL ₄ (2)							
Zn1—06	1.905 (3)	Zn2—O3	1.907 (4)	Zn3—012	2.031 (4)		
Zn1—07	1.951 (4)	Zn2—010	1.978 (3)	Zn3—N8	2.078 (5)		
Zn1—01	1.967 (3)	Zn2—O4	1.969 (3)	Zn3—013	2.104 (5)		
Zn1—N4	1.989 (4)	Zn2—N2	1.988 (4)	Zn3—09	2.047 (4)		
Zn3—N6	2.073 (5)	Gd1—08	2.314 (4)	Gd1—011	2.314 (3)		
Gd1—01	2.399 (4)	Gd1—07	2.419 (3)	Gd1—O4	2.402 (3)		
Gd1—05	2.312 (3)	Gd1—010	2.376 (3)	Gd1—02	2.310 (3)		
08—Gd1—07	71.76 (12)	010-Gd1-07	136.30 (11)	O2—Gd1—O10	74.62 (12)		
08—Gd1—010	77.92 (12)	010-Gd1-01	131.85 (12)	02-Gd1-01	70.13 (12)		
08—Gd1—01	141.43 (11)	010-Gd1-04	69.93 (12)	02-Gd1-05	96.80 (13)		
08-Gd1-011	88.60 (13)	02—Gd1—08	148.39 (13)	02—Gd1—011	97.37 (13)		
08—Gd1—04	80.30 (12)	02—Gd1—07	139.83 (13)	011—Gd1—07	76.64 (11)		
02—Gd1—04	75.82 (12)	05—Gd1—010	140.00 (12)	O11-Gd1-O10	71.83 (12)		
01—Gd1—07	69.70 (11)	05-Gd1-01	76.76 (12)	011-Gd1-01	81.21 (12)		
01-Gd1-04	128.47 (12)	05—Gd1—011	147.87 (12)	011-Gd1-04	141.60 (12)		
05—Gd1—08	94.20 (13)	05-Gd1-04	70.10 (12)	O4—Gd1—O7	132.06 (11)		
05—Gd1—07	73.94 (12)	06—Zn1—N4	97.04 (16)	06—Zn1—07	114.17 (15)		
07—Zn1—N4	120.94 (17)	07—Zn1—01	89.26 (14)	06—Zn1—01	118.77 (15)		
01—Zn1—N4	118.56 (16)	03—Zn2—010	115.62 (15)				

Table S3. Selected bond lengths (Å) for complex 2

Zn ₃ ErL ₄ (3)							
Zn3—012	2.050 (4)	Zn2—06	1.907 (4)	Zn1—03	1.910 (5)		
Zn3—09	2.047 (4)	Zn2—010	1.954 (4)	Zn1—N2	1.991 (5)		
Zn3—015	2.081 (4)	Zn2—01	1.959 (4)	Zn1—07	1.965 (4)		
Zn3—N7	2.084 (5)	Zn2—N4	2.005 (5)	Zn1—04	1.957 (4)		
Zn3—N6	2.066 (5)	05—Er1	2.290 (4)	02—Er1	2.290 (4)		
08—Er1	2.264 (4)	010—Er1	2.380 (4)	01—Er1	2.355 (4)		
04—Er1	2.369 (4)	Er1—011	2.266 (4)	07—Er1	2.333 (4)		
O3—Zn1—N2	96.4 (2)	06—Zn2—010	115.03 (17)	012—Zn3—015	92.38 (19)		
03—Zn1—07	116.72 (18)	06—Zn2—01	119.25 (18)	012—Zn3—N6	92.3 (2)		
03—Zn1—O4	117.12 (19)	06—Zn2—N4	97.0 (2)	09—Zn3—012	170.85 (16)		
07—Zn1—N2	116.6 (2)	010—Zn2—01	88.36 (17)	09—Zn3—015	96.08 (18)		
O4—Zn1—N2	124.9 (2)	O10—Zn2—N4	118.5 (2)	09—Zn3—N6	86.51 (19)		
04—Zn1—07	86.96 (17)	01—Zn2—N4	120.6 (2)	N6—Zn3—O15	120.1 (2)		
08—Er1—05	145.55 (15)	05—Er1—07	141.20 (15)	07—Er1—01	131.06 (15)		
08—Er1—010	75.10 (14)	05—Er1—04	71.17 (15)	07—Er1—04	70.03 (15)		
08—Er1—02	100.78 (15)	02—Er1—010	141.03 (15)	04—Er1—010	131.31 (14)		
08—Er1—01	81.25 (15)	02—Er1—01	70.74 (15)	011—Er1—05	95.04 (15)		
08—Er1—07	72.91 (14)	02—Er1—07	74.21 (16)	011—Er1—010	72.78 (14)		
08—Er1—04	142.46 (15)	02—Er1—04	74.78 (15)	011—Er1—02	146.17 (15)		
08—Er1—011	87.93 (14)	01—Er1—010	70.34 (14)	011—Er1—01	143.09 (14)		
05—Er1—010	73.11 (14)	01—Er1—04	128.88 (14)	011—Er1—07	77.40 (14)		
05—Er1—02	95.65 (16)	07—Er1—010	136.54 (13)	011—Er1—04	78.53 (14)		
05—Er1—01	75.91 (16)						

Table S4. Selected bond lengths (Å) for complex 3

7. Diagram of crystal structure

Figure S7. Wires/Sticks representation of complex **3** in crystal cell, in which two kinds of lanthanide helicates with *M* helical configuration and *P* helical configuration arranged and self-assembled alternatively. All hydrogen atoms, solvent molecules and uncoordinated anions are omitted for clarity.

8. Catalystic performance

Cat.	Co-cat.	Epoxide (Mole ratio)	T (°C)	P (MPa)	Time (h)	Yield (%)	TOF (h ⁻¹)
$Zn(OPO)_2^1$	TBAB (0.9)	(propylene epoxide) 1:40000	120	3	1	46	18400
Zn-CMP ²	TBAB (0.9)	(propylene epoxide) 1:40000	120	3	1	29	11600
ZnBr ₂ ³	-	(propylene epoxide) 1:1790	140	3	1	81	8670
Ni(PPh3)Cl2/PPh3/Zn4	TBAB	(propylene epoxide) 1:3570	120	2.5	1	99	3544
Yb-mesocate ⁵	TBAB (0.75)	(styrene oxide) 1:1000	120	1	2.5	95	380
Helicate-1(Zn-Tb) ⁶	TBAB (0.5)	(styrene oxide) 1:40000	120	1	1	67	26800
3 (This work)	TBAB (0.8)	(styrene oxide) 1:50000	120	1	2	86	21500

Table S5. Representative homogeneous and heterogeneous catalysts with high TOF used for the synthesis of cyclic carbonates

9. ¹H NMR spectra of substrates and products under 120 °C⁷⁻¹²

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.72 – 4.61 (m, 1H.), H^{b1} δ 4.53 (t, *J* = 8.1 Hz, 1H), H^{b1}' δ 4.09 (dd, *J* = 8.3, 7.0 Hz, 1H), H^{b3} δ 1.90 – 1.69 (m, 2H), H^{b4} δ 1.07 – 0.98 (m, 3H). [(M+H)⁺]: 117.1 (calculated m/z 116.1).

¹H NMR (400 MHz, CDCl₃): H^{b1} δ 4.13 (s, 2H), H^{b3} and H^{b4} δ 1.51 (s, 6H,). [(M+H)⁺]: 117.0 (calculated m/z 116.1).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.95 (ddt, 1H), H^{b2} δ 4.60 (t, *J* = 8.5 Hz, 1H), H^{b1} δ 4.36 (dd, *J* = 8.8, 5.9 Hz, 1H), H^{b3} δ 3.80 – 3.28 (m, 2H). [(M+H)⁺]: 180.8 (calculated m/z 179.9).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ (ddt, J = 8.0, 6.0, 3.9 Hz, 1H), H^{b1} δ 4.49 (t, J = 8.4 Hz, 1H), H^{b1} δ 4.39 (dd, J = 8.3, 6.0 Hz, 1H), H^{b3} δ 3.64 (qd, J = 10.9, 3.9 Hz, 2H), H^{b4} 3.51 (t, 2H), H^{b3}1.44 – 1.29 (m, 2H), H^{b7} 0.92 (t, J = 7.4 Hz, 3H). Due to the influence of moisture in CDCl3, H^{b5} is not discussed. [(M+H)⁺]: 175.0 (calculated m/z 174.2).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.79 (ddt, *J* = 8.0, 6.0, 3.8 Hz, 1H), H^{b1} δ 4.49 (t, *J* = 8.3 Hz, 1H), H^{b1} δ 4.39 (dd, *J* = 8.2, 6.0 Hz, 1H), H^{b3} δ 3.62 (dddd, *J* = 26.9, 10.9, 3.7, 2.0 Hz, 2H), H^{b4} δ 3.40 (dd, 2H), 1.50 (dd, *J* = 11.8, 5.9 Hz, 1H), 1.42 - 1.19 (m, 8H), 0.88 (dt, *J* = 10.2, 7.0 Hz, 6H). [(M+H)⁺]: 231.2 (calculated m/z 230.3).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.69 (ddt, 1H), H^{b1} δ 4.52 (t, *J* = 8.1 Hz, 1H), H^{b1} δ 4.06 (dd, *J* = 8.4, 7.3 Hz, 1H), H^{b2} δ 1.81 (ddd, *J* = 14.2, 10.4, 5.3 Hz, 1H), H^{b2} δ 1.68 (ddd, *J* = 14.2, 10.4, 5.3 Hz, 1H), 1.43 – 1.17 (m, 16H), 0.88 (t, *J* = 6.8 Hz, 3H). [(M+H)⁺]: 229.1 (calculated m/z 228.17).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.76 (ddt, *J* = 8.2, 6.0, 4.1 Hz, 1H), H^{b1} δ 4.47 (t, *J* = 8.3 Hz, 1H), H^{b1} δ 4.37 (dd, *J* = 8.3, 6.0 Hz, 1H), H^{b3} and H^{b4} δ 3.77 – 3.50 (m, 3H), 1.15 (d, *J* = 1.6 Hz, 6H). [(M+H)⁺]: 162.0 (calculated m/z 161.1).

¹H NMR (400 MHz, CDCl₃): H^{b2} δ 4.76 (ddt, *J* = 8.3, 5.7, 4.7, 3.7 Hz, 1H), 4.47 (t, *J* = 8.3 Hz, 1H), 4.38 (dd, *J* = 8.3, 5.7 Hz, 1H), 3.57 (ddd, *J* = 13.8, 10.3, 4.2 Hz, 2H), 1.20 (s, 9H). [(M+H)⁺]: 175.0 (calculated m/z 174.1).

5.305.255.52

¹H NMR (400 MHz, CDCl₃): H^{b5} δ 5.97 – 5.77 (m, 1H), H^{b6} δ 5.38 – 5.15 (m, 2H), H^{b2} δ (ddt, *J* = 8.4, 6.0, 3.9 Hz, 1H), H^{b1} δ 4.49 (t, *J* = 8.4 Hz, 1H), H^{b1} δ 4.39 (dd, *J* = 8.4, 6.0 Hz, 1H), H^{b4} δ 4.09 – 3.96 (m, 2H), H^{b3} δ 3.64 (ddd, *J* = 26.7, 11.0, 3.9 Hz, 2H). [(M+H)⁺]: 158.9 (calculated m/z 158.1)..

¹H NMR (400 MHz, CDCl₃): H^{b4} δ 6.16 (s, 1H), H^{b4} δ 5.68 – 5.64 (m, 1H), H^{b2} δ 4.98 (ddt, *J* = 8.0, 6.0, 3.9 Hz, 1H), H^{b1} δ 4.58 (t, *J* = 8.0 Hz, 1H), H^{b1} δ 4.36 (dd, *J* = 6.3, 2.4 Hz, 1H), H^{b3} δ 4.09 (dd, *J* = 8.0, 6.0 Hz, 1H), H^{b3} δ 4.33 (t, *J* = 4.8 Hz, 1H), H^{b5} δ 1.96 (d, *J* = 1.0 Hz, 3H). [(M+H)⁺]: 186.9 (calculated m/z 186.1).

¹H NMR (400 MHz, CDCl₃): H^{b5} and H^{b7} δ 7.42 – 7.28 (m, 2H), H^{b6} δ 7.10 – 6.99 (m, 1H), H^{b3} and H^{b8} δ 6.91 (dt, *J* = 9.2, 2.2 Hz, 1H), H^{b2} δ 5.02 (ddt, *J* = 8.4, 6.0, 4 Hz, 1H), H^{b1} δ 4.62 (t, *J* = 8.4 Hz, 1H), H^{b1} δ 4.54 (dd, *J* = 8.4, 6.0 Hz, 1H), H^{b3} δ 4.24 (dd, *J* = 10.5, 4.0 Hz, 1H), H^{b3} δ 4.16 (dd, *J* = 10.6, 3.6 Hz, 1H). [(M+H)⁺]: 194.9 (calculated m/z 194.1).

¹H NMR (400 MHz, CDCl₃): H^{b3}, H^{b5} and H^{b7} δ 7.50 – 7.40 (m, 3H), H^{b4} and H^{b6} δ 7.40 – 7.32 (m, 2H), H^{b2} δ 5.68 (t, *J* = 8.4 Hz, 1H), H^{b1} δ 4.80 (t, *J* = 8.4 Hz, 1H), H^{b1} δ 4.36 (t, *J* = 8.4 Hz, 1H). [(M+H)⁺]: 164.9 (calculated m/z 164.0).

¹H NMR (400 MHz, CDCl₃): H^{b1} and H^{b6} δ 4.75 – 4.60 (m, 2H), H^{b3} and H^{b4} δ 1.93 (ddd, *J* = 19.6, 13.2, 6.3 Hz, 4H), H^{b2} and H^{b5} δ 1.50 – 1.37 (m, 4H). [(M+H)⁺]: 143.0 (calculated m/z 142.1).

¹H NMR (300 MHz, CDCl₃) δ 5.14 – 5.08 (m, 2H), 2.25 – 2.11 (m, 2H), 1.87 – 1.74 (m, 2H), 1.74 – 1.62 (m, 2H). Due to the influence of moisture in CDCl3, H^{b5} is not discussed. [(M+H)⁺]: 129.0 (calculated m/z 128.1).

10. ¹H NMR spectra of substrates and products under 80 °C⁷⁻¹²

11. Notes and references

- 1. R. Ma, L.-N. He and Y.-B. Zhou, Green Chem., 2016, 18, 226-231.
- 2. Y. Xie, T.-T. Wang, R.-X. Yang, N.-Y. Huang, K. Zou and W.-Q. Deng, ChemSusChem, 2014, 7, 2110-2114.
- 3. H. Xie, S. Li and S. Zhang, J. Mol. Catal. A: Chem., 2006, 250, 30-34.
- 4. F. Li, C. Xia, L. Xu, W. Sun and G. Chen, *Chem. Commun.*, 2003, DOI: 10.1039/B305617A, 2042-2043.
- 5. Q. Han, L. Wang, Z. Shi, C. Xu, Z. Dong, Z. Mou and W. Liu, *Chem. Asian J*, 2017, **12**, 1364-1373.
- 6. L. Wang, C. Xu, Q. Han, X. Tang, P. Zhou, R. Zhang, G. Gao, B. Xu, W. Qin and W. Liu, *Chem. Commun.*, 2018, 54, 2212-2215.
- 7. L. Wang, R. Zhang, Q. Han, C. Xu, W. Chen, H. Yang, G. Gao, W. Qin and W. Liu, *Green Chem.*, 2018, 20, 5311-5317.
- 8. G. Wang, C. Xu, L. Wang and W. Liu, *Dalton Trans.*, 2018, 47, 12711-12717.
- 9. A. C. Shaikh, J. M. Veleta, J. Bloch, H. J. Goodman and T. L. Gianetti, *Eur. J. Org. Chem.*, 2020, DOI: 10.1002/ejoc.202000221, 2553-2559.
- 10. J. Qin, P. Wang, Q. Li, Y. Zhang, D. Yuan and Y. Yao, Green Chem., 2014, 50, 10952-10955.
- 11. Y. Ge, G. Cheng, N. Xu, W. Wang and H. Ke, Catal. Sci. Technol., 2019, 9, 4255-4261.
- 12. T. Biswas, A. Halder, K. S. Paliwal, A. Mitra, G. Tudu, R. Banerjee and V. Mahalingam, *Chem. Asian J*, 2020, 15, 1683-1687.