Electronic Supplementary Information For:

Photophysics and Ultrafast Processes in Rhenium(I) Diimine Dicarbonyls

Hala Atallah, Chelsea M. Taliaferro, Kaylee A. Wells and Felix N. Castellano*

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States

Table of Contents

Experimental Details for Syntheses	S8
Figure S1. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(3,4,7,8- Me ₄ phen) ₂](CF ₃ SO ₃) (1) in CH ₂ Cl ₂ - <i>d</i> ₂ (400 MHz).	S10
Figure S2. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(3,4,7,8- Me ₄ phen) ₂](CF ₃ SO ₃) (1) in CH ₂ Cl ₂ - <i>d</i> ₂ (100 MHz).	S11
Figure S3. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2) in CH ₃ CN- d_3 (400 MHz).	S12
Figure S4. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2) in CH ₃ CN- d_3 (100 MHz).	S13
Figure S5. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3) in CH ₃ CN- d_3 (400 MHz).	S14
Figure S6. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3) in CH ₃ CN- d_3 (100 MHz).	S15
Figure S7. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(phen) ₂](CF ₃ SO ₃) (4) in CH ₃ CN- d_3 (400 MHz).	S16
Figure S8. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Ph ₂ phen) ₂]PF ₆ (5) in CH ₃ CN- <i>d</i> ₃ (400 MHz).	S17
Figure S9. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ (6) in CH ₂ Cl ₂ - d_2 (400 MHz).	S18
Figure S10. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ (6) in CH ₂ Cl- <i>d</i> ₂ (100 MHz).	S19
Figure S11. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7) in CH ₃ CN- d_3 (400 MHz).	S20
Figure S12. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7) in CH ₃ CN- d_3 (100 MHz)	S21
Figure S13. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(bpy) ₂]PF ₆ (8) in CH ₃ CN- <i>d</i> ₃ (400 MHz).	S22

Figure S14. ¹ H NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ S23 (9) in CH ₃ CN- <i>d</i> ₃ (400 MHz). S23	3
Figure S15. ¹³ C NMR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ (9) in CH ₃ CN- <i>d</i> ₃ (100 MHz).	4
Figure S16. HRMS spectrum of cis-[Re(CO ₂)(3,4,7,8- S25 Me4phen)2](CF3SO3) (1). S25 S2	5
Figure S17. HRMS spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2). S26	6
Figure S18. HRMS spectrum of <i>cis</i> -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ S2	7
Figure S19. HRMS spectrum of cis -[Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ S28	8
Figure S20. HRMS spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7). S29	9
Figure S21. HRMS spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ S30 (9).	0
Figure S22. The simulated isotopic pattern of the ESI-MSspectrum in comparison with the experimental data for <i>cis</i> -[Re(3,4,7,8-Me4phen)2(CO)2](CF3SO3) (1).S33	1
Figure S23. The simulated isotopic pattern of the ESI-MSspectrum in comparison with the experimental data for <i>cis</i> - $[Re(4,7-Me_2phen)_2(CO)_2]PF_6$ (2).S32	2
Figure S24. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for <i>cis</i> - $[Re(5,6-Me_2phen)_2(CO)_2]PF_6$ (3). S3	3
Figure S25. The simulated isotopic pattern of the ESI-MSspectrum in comparison with the experimental data for <i>cis</i> - $[Re(5,5'-Me_2bpy)_2(CO)_2]PF_6(6).$ S34	4
Figure S26. The simulated isotopic pattern of the ESI-MSspectrum in comparison with the experimental data for <i>cis</i> -[Re(4,4'-dtbbpy) ₂ (CO) ₂]PF ₆ (7).S35	5
Figure S27. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for <i>cis</i> - [Re(4,4'-Me ₂ bpy) ₂ (CO) ₂]PF ₆ (9). S36	6

Figure S28. FTIR spectrum of cis -[Re(CO ₂)(3,4,7,8-Meanben)a](CE ₂ SO ₂) (1)	536
	550
Figure S29. FTIR spectrum of cis -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2).	\$37
Figure S30. FTIR spectrum of cis -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3).	S37
Figure S31. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(phen) ₂](CF ₃ SO ₃) (4).	S38
Figure S32. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Ph ₂ phen) ₂]PF ₆ (5).	S38
Figure S33. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ (6).	\$39
Figure S34. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7).	S 39
Figure S35. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(bpy) ₂]PF ₆ (8).	S40
Figure S36. FTIR spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ (9).	S40
Figure S37. Comparison of the carbonyl stretching frequencies for 1 , 2 , 3 , 4 , and 5 .	S41
Figure S38. Comparison of the carbonyl stretching frequencies for 6, 7, 8, and 9.	S41
Figure S39. Cyclic voltammogram spectrum for <i>cis</i> - $[Re(CO_2)(3,4,7,8-Me_4phen)_2](CF_3SO_3)$ (1). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S42
Figure S40. Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S42
Figure S41 . Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S43
Figure S42. Cyclic voltammogram spectrum for <i>cis</i> - [Re(CO ₂)(phen) ₂](CF ₃ SO ₃) (4). Scans were taken at 20 mV/s in	S43

CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	
Figure S43. Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(4,7-Ph ₂ phen) ₂]PF ₆ (5). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S44
Figure S44. Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(5,5'- Me_2bpy) ₂]PF ₆ (6). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S44
Figure S45. Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(4,4'- dtbbpy) ₂]PF ₆ (7). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S45
Figure S46. Cyclic voltammogram spectrum for <i>cis</i> - $[Re(CO_2)(bpy)_2]PF_6$ (8). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S45
Figure S47. Cyclic voltammogram spectrum for <i>cis</i> -[Re(CO ₂)(4,4'- Me_2bpy) ₂]PF ₆ (9). Scans were taken at 20 mV/s in CH ₃ CN with 0.1 M TBAPF ₆ supporting electrolyte. Pt was used a working electrode with Ag/AgNO ₃ reference electrode.	S46
Figure S48. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(3,4,7,8-Me ₄ phen) ₂](CF ₃ SO ₃) (1) at 680 nm in deaerated CH ₂ Cl ₂ .	S46
Figure S49. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2) at 700 nm in deaerated CH_2CI_2 .	S47
Figure S50 . Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3) at 705 nm in deaerated CH_2CI_2 .	S47
Figure S51 . Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(phen) ₂](CF ₃ SO ₃) (4) at 707 nm in deaerated CH_2CI_2 .	S48

Figure S52. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(4,7-Ph ₂ phen) ₂]PF ₆ (5) at 730 nm in deaerated CH_2Cl_2 .	S48
Figure S53 . Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ (6) at 696 nm in deaerated CH ₂ Cl ₂ .	S49
Figure S54. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7) at 710 nm in deaerated CH ₂ Cl ₂ .	S49
Figure S55. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(bpy) ₂]PF ₆ (8) at 720 nm in deaerated CH ₂ Cl ₂ .	S50
Figure S56. Room temperature PL emission intensity decay spectrum of <i>cis</i> -[Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ (9) at 718 nm in deaerated CH ₂ Cl ₂ .	S50
Figure S57. Excited-state absorption difference spectra in deaerated CH ₂ Cl ₂ with 500 nm pulsed excitation (2 mJ/pulse) for complexes 1-5 .	S51
Figure S58. Excited-state absorption difference spectra in deaerated CH ₂ Cl ₂ with 500 nm pulsed excitation (2 mJ/pulse) for complexes 6-9 .	\$52
Figure S59. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(3,4,7,8-Me ₄ phen) ₂](CF ₃ SO ₃) (1) at 470 nm in deaerated CH ₂ Cl ₂ .	S52
Figure S60. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(4,7-Me ₂ phen) ₂]PF ₆ (2) at 470 nm in deaerated CH ₂ Cl ₂ .	\$53
Figure S61. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(5,6-Me ₂ phen) ₂]PF ₆ (3) at 435 nm in deaerated CH ₂ Cl ₂ .	S53
Figure S62. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(phen) ₂](CF ₃ SO ₃) (4) at 470 nm in deaerated CH ₂ Cl ₂ .	S5 4
Figure S63. Room temperature nsTA decay spectrum of <i>cis</i> - $[Re(CO_2)(4,7-Ph_2phen)_2]PF_6$ (5) at 480 nm in deaerated CH ₂ Cl ₂ .	S54

Figure S64. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(5,5'-Me ₂ bpy) ₂]PF ₆ (6) at 535 nm in deaerated CH ₂ Cl ₂ .	S55
Figure S65. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(4,4'-dtbbpy) ₂]PF ₆ (7) at 540 nm in deaerated CH ₂ Cl ₂ .	\$55
Figure S66 . Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(bpy) ₂]PF ₆ (8) at 550 nm in deaerated CH ₂ Cl ₂ .	S56
Figure S67. Room temperature nsTA decay spectrum of <i>cis</i> - [Re(CO ₂)(4,4'-Me ₂ bpy) ₂]PF ₆ (9) at 550 nm in deaerated CH ₂ Cl ₂ .	S56
Figure S68. (A) Electronic absorption spectrum of 6 measured in CH ₂ Cl ₂ . (B) The nsTA difference spectrum of 6 measured in CH ₂ Cl ₂ . (C) Differential absorption spectrum of one-electron oxidized 6 . (D) Differential absorption spectrum of one-electron reduced 6 .	S57
Figure S69. Ultrafast transient absorption difference spectra of phen-containing complexes 1–5 in dichloromethane ($\lambda_{ex} = 500$ nm, 100 fs fwhm, 0.5 μ J/pulse). The laser scatter at 500 nm removed for clarity.	S58
Figure S70. Ultrafast transient absorption difference spectra of bpy-containing complexes 6–9 in dichloromethane (λ_{ex} = 500 nm, 100 fs fwhm, 0.5 µJ/pulse). The laser scatter at 500 nm removed for clarity.	S59
Figure S71. Ultrafast TR-IR difference spectra following 500 nm (0.7 μ J/pulse) excitation (of the <i>cis</i> -[Re(N^N) ₂ (CO) ₂] ⁺ complexes 1-9 in dichloromethane, where N^N is phen-based (top) or bpy-based (bottom). (Spacer width = 750 μ m)	S60
Figure S72. Simulated TR-IR spectra of complexes 1–9 . Symmetric (S) and antisymmetric (A) modes are labeled on the figure. Calculated at the B3LYP/D3/6-31G*/LANL2DZ (PCM solvent=dichloromethane) level of theory	S61
Section S73. Optimized S_0 and T_1 geometries of $1-9$	S62
References for the Electronic Supplementary Information	S121

Experimental Details for Synthesis

cis-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (1). This molecule was prepared using a modified coworkers.^{S1} Smithback and procedure originally described by fac-Re(3,4,7,8-Me₄Phen)(CO)₃(CF₃SO₃) (100 mg, 0.15 mmol) and 2.2 eq of 3,4,7,8-tetramethyl-1,10phenanthroline (3,4,7,8-Me₄phen) were placed in a heavy walled reaction tube equipped with a stir bar. The tube was sealed with a rubber septum and purged with N₂ gas for 30 min. The combined solids were heated at 275°C for 15 min under stirring. The mixture was then cooled to RT and MeOH (5 mL) was added, resulting in a solid orange precipitate. The orange precipitate was filtered. Purification was achieved by column chromatography over acidic alumina, starting with a 95:5 ratio (v:v) of dichloromethane (CH₂Cl₂)/acetonitrile (CH₃CN) and gradually increasing the percent composition of CH₃CN in the eluent. The final product was recrystallized by first dissolving the isolated solid in methylene chloride and adding this solution dropwise to a stirring solution of diethyl ether, resulting in the generation of an orange precipitate. Yield: 61 mg (46%).

cis-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (**2**). The synthesis conditions for **2** were exactly the same as for **1**, using 100 mg (0.16 mmol) of *fac*-Re(4,7-Me₂phen)(CO)₃(CF₃SO₃) and 2.2 eq of 4,7-dimethyl-1,10-phenanthroline (4,7-Me₂phen). The cooled reaction mixture was purified by dissolving in MeOH, and the product was precipitated by the addition of an aqueous solution of ammonium hexafluorophosphate. The mixture was maintained in a refrigerator at 3-5°C for one hour, filtered, and washed with deionized H₂O. Following the filtration step, purification was achieved by column chromatography over acidic alumina, starting with a 95:5 ratio (v:v) of CH₂Cl₂/CH₃CN and gradually increasing the percent composition of CH₃CN in the eluent. The final product was recrystallized by first dissolving the isolated solid in methylene chloride and adding this solution dropwise to a stirring solution of diethyl ether. Yield: 65 mg (51%).

cis-[Re(5,6-Me₂phen)₂(CO)₂]PF₆ (**3**). The synthesis and purification for **3** was exactly the same as for **2** using 100 mg (0.16 mmol) of *fac*-Re(5,6-Me₂phen)(CO)₃(CF₃SO₃) and 2.2 eq of 5,6-dimethyl-1,10-phenanthroline (5,6-Me₂phen). Yield: 33 mg (24%).

cis-[Re(phen)₂(CO)₂](CF₃SO₃) (**4**).^{S1} The synthesis and purification of **4** was exactly the same as for **1** using 400 mg (0.67 mmol) of *fac*-Re(phen)(CO)₃(CF₃SO₃) and 2.2 eq of 1,10-phenanthroline. Yield: 356 mg (71%).

cis-[Re(4,7-Ph₂phen)₂(CO)₂]PF₆ (**5**).^{S1} The synthesis and purification of **5** was exactly the same as for **2** using 355 mg (0.49 mmol) of *fac*-[Re(4,7-Ph₂phen)(CO)₃(MeCN)]BF₄ and 2.2 eq of 4,7-diphenyl-1,10-phenanthroline (4,7-Ph₂phen). The final product was reprecipitated with hexanes instead of diethyl ether. Yield: 182 mg (36%).

cis-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**). The synthesis and purification of **6** was the same as for **2** using 100 mg (0.17 mmol) of *fac*-[Re(5,5'-Me₂bpy)(CO)₃(MeCN)](BF₄) and 2.2 eq of 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me₂bpy). However, the reaction time was increased to 4 hours. Yield: 84 mg (65 %).

cis-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (**7**). The synthesis and purification of **7** was the same as for **6** using 608 mg (0.91 mmol) of *fac*-[Re(4,4'-dtbbpy)(CO)₃(MeCN)](BF₄) and 2.2 eq of 4 4'-di-*tert*-butyl-2 2'-bipyridine (4,4'-dtbbpy). Reprecipitation was performed in hexanes instead of diethyl ether. Yield: 517 mg (61%).

cis-[Re(bpy)₂(CO)₂]PF₆ (**8**).^{S1} The synthesis and purification of **8** was the same as for **6** using 285 mg (0.51 mmol) of *fac*-[Re(bpy)(CO)₃(MeCN)](BF₄) and 3 eq of 2,2'-bipyridine. Yield: 181 mg (51%).

cis-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**). The synthesis and purification of **9** was the same as for **6** using 100 mg (0.17 mmol) of *fac*-[Re(4,4'-Me₂bpy)(CO)₃(MeCN)](BF₄) and 2.2 eq of 4,4'-dimethyl-2,2'-bipyridine (4,4'-Me₂bpy). Yield: 32 mg (25%).

Figure S1. ¹H NMR spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**) in CH₂Cl₂-*d*₂ (400 MHz).

Figure S2. ¹³C NMR spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**) in CH₂Cl₂-*d*₂ (100 MHz).

Figure S3. ¹H NMR spectrum of *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (2) in CH₃CN- d_3 (400 MHz).

Figure S4. ¹³C NMR spectrum of *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (2) in CH₃CN- d_3 (100 MHz).

Figure S5. ¹H NMR spectrum of *cis*-[Re(5,6-Me₂phen)₂(CO)₂]PF₆(**3**) in CH₃CN- d_3 (400 MHz).

Figure S6. ¹³C NMR spectrum of *cis*-[Re(5,6-Me₂phen)₂(CO)₂]PF₆ (3) in CH₃CN- d_3 (100 MHz).

Figure S7. ¹H NMR spectrum of *cis*-[Re(phen)₂(CO)₂](CF₃SO₃) (**4**) in CH₃CN-*d*₃ (400 MHz).

Figure S8. ¹H NMR spectrum of *cis*-[Re(4,7-Ph₂phen)₂(CO)₂]PF₆(5) in CH₃CN- d_3 (400 MHz).

Figure S9. ¹H NMR spectrum of *cis*-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**) in CH₂Cl₂- d_2 (400 MHz).

Figure S10. ¹³C NMR spectrum of *cis*-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**) in CH₂Cl₂- d_2 (100 MHz).

Figure S11. ¹H NMR spectrum of *cis*-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (**7**) in CH₃CN- d_3 (400 MHz).

Figure S12. ¹³C NMR spectrum of *cis*-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (7) in CH₃CN- d_3 (100 MHz).

Figure S13. ¹H NMR spectrum of *cis*-[Re(bpy)₂(CO)₂]PF₆ (**8**) in CH₃CN-*d*₃ (400 MHz).

Figure S14. ¹H NMR spectrum of *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**) in CH₃CN- d_3 (400 MHz).

Figure S15. ¹³C NMR spectrum of *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (9) in CH₃CN- d_3 (100 MHz).

Figure S16. HRMS spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**).

Figure S17. HRMS spectrum of *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (2).

Figure S18. HRMS spectrum of *cis*-[Re(5,6-Me₂phen)₂(CO)₂]PF₆(**3**).

Figure S19. HRMS spectrum of cis-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆(6).

Figure S20. HRMS spectrum of *cis*-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (7).

Figure S21. HRMS spectrum of *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (9).

Figure S22. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**).

Figure S23. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (**2**).

Figure S24. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for cis-[Re(5,6-Me₂phen)₂(CO)₂]PF₆(**3**).

Figure S25. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for *cis*-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**).

Figure S26. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for *cis*- $[Re(4,4'-dtbbpy)_2(CO)_2]PF_6$ (7).

Figure S27. The simulated isotopic pattern of the ESI-MS spectrum in comparison with the experimental data for *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**).

Figure S28. FTIR spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**).

Figure S29. FTIR spectrum of *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (2).

Figure S30. FTIR spectrum of *cis*-[Re(5,6-Me₂phen)₂(CO)₂]PF₆ (3).

Figure S31. FTIR spectrum of *cis*-[Re(phen)₂(CO)₂](CF₃SO₃) (4).

Figure S32. FTIR spectrum of *cis*-[Re(4,7-Ph₂phen)₂(CO)₂]PF₆(5).

Figure S33. FTIR spectrum of *cis*-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**).

Figure S34. FTIR spectrum of cis-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (7).

Figure S35. FTIR spectrum of *cis*-[Re(bpy)₂(CO)₂]PF₆ (8).

Figure S36. FTIR spectrum of *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**).

Figure S37. Comparison of the carbonyl stretching frequencies for 1, 2, 3, 4, and 5.

Figure S38. Comparison of the carbonyl stretching frequencies for 6, 7, 8, and 9.

Figure S39. Cyclic voltammogram spectrum for *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S40. Cyclic voltammogram spectrum for *cis*-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (**2**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S41. Cyclic voltammogram spectrum for *cis*-[Re(5,6-Me₂phen)₂(CO)₂]PF₆ (**3**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S42. Cyclic voltammogram spectrum for *cis*-[Re(phen)₂(CO)₂](CF₃SO₃) (**4**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S43. Cyclic voltammogram spectrum for *cis*-[Re(4,7-Ph₂phen)₂(CO)₂]PF₆ (**5**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S44. Cyclic voltammogram spectrum for *cis*-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S45. Cyclic voltammogram spectrum for *cis*-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (**7**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S46. Cyclic voltammogram spectrum for *cis*-[Re(bpy)₂(CO)₂]PF₆ (**8**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S47. Cyclic voltammogram spectrum for *cis*-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**). Scans were taken at 20 mV/s in CH₃CN with a 0.1 M TBAPF₆ supporting electrolyte. Pt was used as the working electrode with Ag/AgNO₃ reference electrode.

Figure S48. Room temperature PL emission intensity decay spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**) at 680 nm in deaerated CH₂Cl₂.

Figure S49. Room temperature PL emission intensity decay spectrum of *cis*-[Re(4,7- $Me_2phen)_2(CO)_2$]PF₆ (2) at 700 nm in deaerated CH₂Cl₂.

Figure S50. Room temperature PL emission intensity decay spectrum of *cis*-[Re(5,6- $Me_2phen)_2(CO)_2$]PF₆(3) at 705 nm in deaerated CH₂Cl₂.

Figure S51. Room temperature PL emission intensity decay spectrum of *cis*-[Re(phen)₂(CO)₂](CF₃SO₃) (**4**) at 707 nm in deaerated CH₂Cl₂.

Figure S52. Room temperature PL emission intensity decay spectrum of *cis*-[Re(4,7- $Ph_2phen)_2(CO)_2$]PF₆(5) at 730 nm in deaerated CH₂Cl₂.

Figure S53. Room temperature PL emission intensity decay spectrum of *cis*-[Re(5,5'- $Me_2bpy)_2(CO)_2$]PF₆ (6) at 696 nm in deaerated CH₂Cl₂.

Figure S54. Room temperature PL emission intensity decay spectrum of cis-[Re(4,4'-dtbbpy)₂(CO)₂]PF₆ (7) at 710 nm in deaerated CH₂Cl₂.

Figure S55. Room temperature PL emission intensity decay spectrum of cis-[Re(bpy)₂(CO)₂]PF₆ (8) at 720 nm in deaerated CH₂Cl₂.

Figure S56. Room temperature PL emission intensity decay spectrum of *cis*-[Re(4,4'- Me_2bpy)₂(CO)₂]PF₆ (9) at 718 nm in deaerated CH₂Cl₂.

Figure S57. Excited-state absorption difference spectra in deaerated CH₂Cl₂ with 500 nm pulsed excitation (2 mJ/pulse) for complexes **1-5**.

Figure S58. Excited-state absorption difference spectra in deaerated CH₂Cl₂ with 500 nm pulsed excitation (2 mJ/pulse) for complexes **6**-**9**.

Figure S59. Room temperature nsTA decay spectrum of *cis*-[Re(3,4,7,8-Me₄phen)₂(CO)₂](CF₃SO₃) (**1**) at 470 nm in deaerated CH₂Cl₂.

Figure S60. Room temperature nsTA decay spectrum of cis-[Re(4,7-Me₂phen)₂(CO)₂]PF₆ (**2**) at 470 nm in deaerated CH₂Cl₂.

Figure S61. Room temperature nsTA decay spectrum of cis-[Re(5,6-Me₂phen)₂(CO)₂]PF₆(**3**) at 435 nm in deaerated CH₂Cl₂.

Figure S62. Room temperature nsTA decay spectrum of cis-[Re(CO)₂(phen)₂](CF₃SO₃) (4) at 470 nm in deaerated CH₂Cl₂.

Figure S63. Room temperature nsTA decay spectrum of cis-[Re(4,7-Ph₂phen)₂(CO)₂]PF₆(5) at 480 nm in deaerated CH₂Cl₂.

Figure S64. Room temperature nsTA decay spectrum of cis-[Re(5,5'-Me₂bpy)₂(CO)₂]PF₆ (**6**) at 535 nm in deaerated CH₂Cl₂.

Figure S65. Room temperature nsTA decay spectrum of cis-[Re (4,4'-dtbbpy)₂(CO)₂]PF₆ (7) at 540 nm in deaerated CH₂Cl₂.

Figure S66. Room temperature nsTA decay spectrum of cis-[Re(bpy)₂(CO)₂]PF₆ (8) at 550 nm in deaerated CH₂Cl₂.

Figure S67. Room temperature nsTA decay spectrum of cis-[Re(4,4'-Me₂bpy)₂(CO)₂]PF₆ (**9**) at 550 nm in deaerated CH₂Cl₂.

Figure S68. (A) Electronic absorption spectrum of 6 measured in CH₂Cl₂. (B) The nsTA difference spectrum of 6 measured in CH₂Cl₂. (C) Differential absorption spectrum of one-electron oxidized
6. (D) Differential absorption spectrum of one-electron reduced 6.

Figure S69. Ultrafast transient absorption difference spectra of phencontaining complexes **1–5** in dichloromethane (λ_{ex} = 500 nm, 100 fs fwhm, 0.5 μ J/pulse). The laser scatter at 500 nm removed for clarity.

Figure S70. Ultrafast transient absorption difference spectra of bpycontaining complexes **6–9** in dichloromethane (λ_{ex} = 500 nm, 100 fs fwhm, 0.5 µJ/pulse). The laser scatter at 500 nm removed for clarity.

Figure S71. Ultrafast TR-IR difference spectra following 500 nm (0.7 μ J/pulse) excitation (of the *cis*-[Re(N^N)₂(CO)₂]⁺ complexes **1–9** in dichloromethane, where N^N is phen-based (top) or bpy-based (bottom). (Spacer width = 750 μ m)

Figure S72. Simulated TR-IR spectra of complexes **1–9**. Symmetric (S) and antisymmetric (A) modes are labeled on the figure. Calculated at the B3LYP/D3/6-31G*/LANL2DZ (PCM solvent=dichloromethane) level of theory.

S73. Optimized S_0 and T_1 geometries of 1-9

Optimized S_0 geometry of $\mathbf{1}$

Re	0.00004000	1.36435900	-0.00000100
Ν	0.34133800	-0.30709500	1.40321800
Ν	2.11469200	1.02797700	-0.09311400
Ν	-0.34138300	-0.30699000	-1.40331000
Ν	-2.11463200	1.02810600	0.09312100
С	-0.56146300	-0.94121000	2.14752100
С	-0.27948200	-2.07364700	2.93398200
С	1.02656300	-2.57239300	2.94359800
С	2.00953000	-1.90073100	2.16093900
С	1.62182500	-0.77132800	1.40610600
С	2.57371900	-0.05763600	0.60589100
С	3.92245500	-0.47572000	0.55339400
С	4.84245700	0.25505100	-0.25032300
С	4.36068300	1.36604500	-0.94875900
С	3.00055400	1.70305700	-0.83409800
С	0.56136400	-0.94110100	-2.14767800
С	0.27929700	-2.07345900	-2.93422100
С	-1.02677600	-2.57213200	-2.94384100
С	-2.00967600	-1.90050300	-2.16106500
С	-1.62189000	-0.77116800	-1.40617400
С	-2.57372100	-0.05749100	-0.60587000
С	-3.92244900	-0.47558400	-0.55325200
С	-4.84236500	0.25514200	0.25061500
С	-4.36055700	1.36620600	0.94891300
С	-3.00044100	1.70322700	0.83412500
Н	-1.56676500	-0.53537800	2.12065600
Н	2.60637500	2.55743400	-1.37093800
Н	1.56669200	-0.53532900	-2.12080300
Н	-2.60622400	2.55762500	1.37090600
С	-0.06832200	2.70402600	-1.34233400
С	0.06850200	2.70395400	1.34239800
0	0.05480400	3.52185800	2.18478800
0	-0.05459600	3.52199500	-2.18466000
С	4.29147900	-1.63105900	1.32457800
Н	5.31981500	-1.97207700	1.30194700
С	3.38495900	-2.30786800	2.08821300
Н	3.71255400	-3.17136300	2.65513000
С	-3.38511000	-2.30761400	-2.08826500
Н	-3.71277100	-3.17105300	-2.65522900
С	-4.29155500	-1.63086100	-1.32449000

Н	-5.31989800	-1.97185600	-1.30182100
С	-1.40482700	-2.69845600	3.72328400
Н	-2.34201200	-2.15917400	3.55933500
Н	-1.56500700	-3.74298700	3.43344900
Н	-1.19469900	-2.68454900	4.79860700
С	1.41398400	-3.78406500	3.75129400
Н	1.81435900	-4.57197200	3.10240600
Н	2.19761600	-3.53274700	4.47553300
Н	0.57177500	-4.20171600	4.30261200
С	6.28391700	-0.17717800	-0.32621700
Н	6.74647700	-0.16770800	0.66783200
Н	6.36395700	-1.20110600	-0.71020500
Н	6.87539700	0.46883200	-0.97468000
С	5.23683700	2.22465200	-1.82985000
Н	6.06215000	2.66711200	-1.26103300
Н	5.67638600	1.64091000	-2.64656500
Н	4.66223100	3.04150000	-2.27482300
С	1.40459100	-2.69827100	-3.72359300
Н	2.34182400	-2.15909600	-3.55955800
Н	1.56467000	-3.74285400	-3.43389200
Н	1.19448100	-2.68420100	-4.79891700
С	-1.41428200	-3.78371400	-3.75163300
Н	-1.81454200	-4.57171300	-3.10278400
Н	-2.19802100	-3.53233000	-4.47573100
Н	-0.57213900	-4.20127400	-4.30312100
С	-5.23666500	2.22488500	1.82997500
Н	-5.67590400	1.64129400	2.64696500
Н	-4.66211500	3.04197100	2.27458200
Н	-6.06220600	2.66701000	1.26123300
С	-6.28377600	-0.17719900	0.32677900
Н	-6.74675200	-0.16698400	-0.66707600
Н	-6.36362200	-1.20141400	0.71002100
Н	-6.87500900	0.46829000	0.97598700

11 12 1.5	
12 13 1.5 34 1.5	
13 14 1.5 50 1.0	
14 15 1.5 54 1.0	
15 27 1.0	
16 17 1.5 28 1.0	
17 18 1.5 58 1.0	
18 19 1.5 62 1.0	
19 20 1.5 38 1.5	
20 21 1.5	
21 22 1.5	
22 23 1.5 40 1.5	
23 24 1.5 70 1.0	
24 25 1.5 66 1.0	
25 29 1.0	
26	
27	
28	
29	
30 33 2.0	
31 32 2.0	
32	
33	
34 35 1.0 36 2.0	
35	
36 37 1.0	
37	
38 39 1.0 40 2.0	
39	
40 41 1.0	
41	
42 43 1.0 44 1.0 45 1.0	
43	
44	
45	
46 47 1.0 48 1.0 49 1.0	
47	
48	
49	
50 51 1.0 52 1.0 53 1.0	
51	
52	
53	
54 55 1.0 56 1.0 57 1.0	

Optimized S_0 geometry of ${f 2}$

Re	0.00000900	1.29994200	-0.00000800
Ν	0.63594000	-0.35849600	1.31137900
Ν	2.05211300	0.97738900	-0.52493100
Ν	-0.63599600	-0.35843000	-1.31143700
Ν	-2.05210000	0.97743600	0.52492400
С	-0.09271500	-0.99169700	2.22937100
С	0.39432800	-2.08425200	2.95871000
С	1.68020300	-2.56057500	2.74718600
С	2.47535200	-1.89234700	1.77049700
С	1.90926000	-0.79475200	1.08046500
С	2.67044100	-0.08102500	0.09573600
С	3.99757100	-0.47467000	-0.19860400
С	4.72472400	0.25762000	-1.18068100
С	4.07242900	1.32233300	-1.78484500
С	2.75708500	1.65314400	-1.44089800
С	0.09262900	-0.99162400	-2.22945900
С	-0.39444400	-2.08416300	-2.95880200
С	-1.68032200	-2.56047200	-2.74725900
С	-2.47543900	-1.89225100	-1.77053900

C	-1.90931500	-0.79467700	-1.08050200
С	-2.67046100	-0.08095600	-0.09574400
С	-3.99759200	-0.47458200	0.19861700
С	-4.72470900	0.25770600	1.18072300
С	-4.07238100	1.32239900	1.78488700
С	-2.75703900	1.65319300	1.44091400
Н	-1.09703700	-0.61646700	2.38877000
Н	-0.25332300	-2.55331100	3.69180200
Н	4.57436600	1.91951100	-2.53874100
Н	2.25004600	2.48421500	-1.91464500
Н	1.09695300	-0.61640700	-2.38887300
Н	0.25318400	-2.55321700	-3.69191700
Н	-4.57429100	1.91957500	2.53880300
Н	-2.24997200	2.48424600	1.91466200
С	-0.35851100	2.64170200	-1.29483400
С	0.35849300	2.64175900	1.29478600
0	0.53355700	3.46134500	2.11636700
0	-0.53300200	3.46184700	-2.11598000
С	4.54411400	-1.59633800	0.50979000
Н	5.55873200	-1.90999600	0.29300500
С	3.81998500	-2.27223700	1.44911300
Н	4.26843600	-3.11265400	1.96613700
С	-3.82007100	-2.27212500	-1.44913300
Н	-4.26854700	-3.11252500	-1.96616200
С	-4.54416900	-1.59622900	-0.50978300
Н	-5.55878800	-1.90987300	-0.29298200
С	-2.21485000	-3.73404200	-3.52182100
Н	-2.50280300	-4.55116800	-2.84997400
Н	-3.10808500	-3.45377000	-4.09241300
Н	-1.46833400	-4.11495000	-4.22266000
С	-6.13817200	-0.10335300	1.54676500
Н	-6.79882900	-0.04141900	0.67401300
Н	-6.19769300	-1.13031400	1.92614900
Н	-6.52709400	0.56764900	2.31635800
С	2.21469600	-3.73417100	3.52173300
Н	2.50265400	-4.55128600	2.84987500
Н	3.10792100	-3.45392500	4.09235300
Н	1.46815800	-4.11508500	4.22254600
С	6.13818700	-0.10346000	-1.54669800
Н	6.79882600	-0.04155400	-0.67393000
Н	6.19769700	-1.13041800	-1.92609700
Н	6.52714000	0.56754600	-2.31627200

1 34 1.0 35 1.0 5 1.0 3 1.0 2 1.0 4 1.0

2 6 1.5 10 1.5
3 11 1.5 15 1.5
4 16 1.5 20 1.5
5 21 1.5 25 1.5
6 7 1.5 26 1.0
7 8 1.5 27 1.0
8 9 1.5 54 1.0
9 10 1.5 40 1.5
10 11 1.5
11 12 1.5
12 13 1.5 38 1.5
13 14 1.5 58 1.0
14 15 1.5 28 1.0
15 29 1.0
16 17 1.5 30 1.0
17 18 1.5 31 1.0
18 19 1.5 46 1.0
19 20 1.5 42 1.5
20 21 1.5
21 22 1.5
22 23 1.5 44 1.5
23 24 1.5 50 1.0
24 25 1.5 32 1.0
25 33 1.0
26
27
28
29
30
31
32
33
34 37 3.0
35 36 3.0
36
37
38 39 1.0 40 2.0
39
40 41 1.0
41
42 43 1.0 44 2.0
43
44 45 1.0
45

Optimized S_0 geometry of ${f 3}$

Re	0.00000200	1.37641800	0.00000500
Ν	0.76946300	-0.28107300	1.23735400
Ν	1.99005900	1.06308300	-0.72948500
Ν	-0.76946500	-0.28106500	-1.23735100
Ν	-1.99005500	1.06308000	0.72949600
С	0.13048000	-0.90653700	2.22706600
С	0.69133100	-2.00069800	2.89665100
С	1.94446400	-2.45538300	2.52651800
С	2.65459100	-1.81194600	1.48540100
С	2.00961000	-0.71522800	0.87050600
С	2.66398300	0.00037000	-0.18053900
С	3.95200100	-0.40258300	-0.60072400
С	4.54609700	0.35273500	-1.63790500
С	3.86462200	1.42675000	-2.18210600
С	2.59119000	1.75552100	-1.70768100
С	-0.13048600	-0.90652300	-2.22707000
С	-0.69134200	-2.00067600	-2.89666300
С	-1.94447500	-2.45536100	-2.52653300

С	-2.65459900	-1.81193000	-1.48540900
С	-2.00961300	-0.71521900	-0.87050700
С	-2.66398300	0.00037300	0.18054400
С	-3.95200100	-0.40257900	0.60072900
С	-4.54609400	0.35273300	1.63791500
С	-3.86461500	1.42674300	2.18212200
С	-2.59118200	1.75551300	1.70769800
Н	-0.84884400	-0.52319900	2.48745100
Н	0.13641600	-2.47933100	3.69557800
Н	4.30169600	2.02188900	-2.97598600
Н	2.03346700	2.58826500	-2.11623600
Н	0.84883800	-0.52318500	-2.48745300
Н	-0.13642900	-2.47930400	-3.69559500
Н	-4.30168500	2.02187800	2.97600700
Н	-2.03345600	2.58825300	2.11625700
Н	2.37471200	-3.30415600	3.04359800
Н	5.53137400	0.10240800	-2.01012400
Н	-5.53137100	0.10240800	2.01013400
Н	-2.37472700	-3.30412800	-3.04361800
С	-0.48816600	2.71995600	-1.25225300
С	0.48816500	2.71992800	1.25229400
0	0.74286200	3.53990700	2.05110500
0	-0.74283000	3.53984100	-2.05117200
С	4.60556400	-1.54115900	0.02613000
С	3.97563100	-2.22596900	1.04398900
С	-3.97564000	-2.22595200	-1.04399800
С	-4.60556800	-1.54114800	-0.02613300
С	4.58170200	-3.41117900	1.76061800
Н	4.68435900	-3.20522600	2.83278300
Н	3.94290300	-4.29657900	1.65931000
Н	5.56796000	-3.67855000	1.38757000
С	5.97731800	-1.89878900	-0.49987000
Н	6.67583900	-1.06454100	-0.36370300
Н	6.41081200	-2.76749800	-0.00902200
Н	5.93777600	-2.11780300	-1.57351800
С	-4.58171600	-3.41115500	-1.76063500
Н	-4.68437600	-3.20519300	-2.83279800
Н	-3.94291900	-4.29655700	-1.65933600
Н	-5.56797300	-3.67852600	-1.38758600
С	-5.97732400	-1.89877800	0.49986500
Н	-6.67584000	-1.06452300	0.36371100
Н	-6.41082400	-2.76747700	0.00900600
Н	-5.93778000	-2.11780600	1.57351100

Optimized S_0 geometry of ${f 4}$

Re	0.00001200	-1.07228300	-0.00002300
Ν	-0.67001600	0.58720800	1.30035800
Ν	-2.03811500	-0.75936700	-0.58674000
Ν	0.66998800	0.58724600	-1.30035800
Ν	2.03814200	-0.75936400	0.58668600
С	0.02872500	1.21977000	2.24432000
С	-0.48653600	2.31326100	2.95848300
С	-1.76446100	2.76327700	2.68150000
С	-2.53137300	2.11009700	1.69174300
С	-1.93587400	1.01434200	1.02346700
С	-2.66591300	0.30012300	0.02000500
С	-3.98478500	0.69670200	-0.30490100
С	-4.66832100	-0.04218200	-1.29405500
С	-4.02946500	-1.11091500	-1.89548500
С	-2.71955900	-1.44049400	-1.51951800
С	-0.02877200	1.21980400	-2.24431400
С	0.48646200	2.31331700	-2.95845700
С	1.76437500	2.76336200	-2.68146200
С	2.53129700	2.11019300	-1.69170600

С	1.93583000	1.01440600	-1.02345300
С	2.66589700	0.30017600	-0.02000900
С	3.98475100	0.69679800	0.30492000
С	4.66831100	-0.04209700	1.29404600
С	4.02949800	-1.11088600	1.89542400
С	2.71961200	-1.44051100	1.51943400
Н	1.02672100	0.84332000	2.43563200
Н	0.12661700	2.78919200	3.71520300
Н	-4.52132500	-1.70481300	-2.65750800
Н	-2.19797800	-2.27148700	-1.97695600
Н	-1.02676400	0.84333500	-2.43561500
Н	-0.12669500	2.78923900	-3.71518000
Н	4.52138200	-1.70479200	2.65742500
Н	2.19807400	-2.27155500	1.97682300
Н	-2.18621000	3.60854800	3.21682800
Н	-5.68239700	0.23129600	-1.56844400
Н	5.68237100	0.23141700	1.56846000
Н	2.18610300	3.60864800	-3.21678200
С	0.39499900	-2.41589000	-1.28462200
С	-0.39511900	-2.41615600	1.28428700
0	-0.59457500	-3.23606700	2.09803100
0	0.59495000	-3.23644200	-2.09760200
С	-4.56258000	1.81949000	0.37972900
Н	-5.57375500	2.11589700	0.11840400
С	-3.86730100	2.49736400	1.33735700
Н	-4.31454000	3.34193500	1.85233000
С	3.86720600	2.49749900	-1.33729300
Н	4.31442200	3.34209800	-1.85224100
С	4.56250300	1.81963200	-0.37967200
Н	5.57365900	2.11608800	-0.11833000

1 38 1.0 39 1.0 3 1.0 2 1.0 4 1.0 5 1.0 2 6 1.5 10 1.5 3 11 1.5 15 1.5 4 16 1.5 20 1.5 5 21 1.5 25 1.5 6 7 1.5 26 1.0 7 8 1.5 27 1.0 8 9 1.5 34 1.0 9 10 1.5 44 1.5 10 11 1.5 11 12 1.5 12 13 1.5 42 1.513 14 1.5 35 1.0
14 15 1.5 28 1.0
15 29 1.0
16 17 1.5 30 1.0
17 18 1.5 31 1.0
18 19 1.5 37 1.0
19 20 1.5 46 1.5
20 21 1.5
21 22 1.5
22 23 1.5 48 1.5
23 24 1.5 36 1.0
24 25 1.5 32 1.0
25 33 1.0
26
27
28
29
30
31
32
33
34
35
36
37
38 41 3.0
39 40 3.0
40
41
42 43 1.0 44 1.5
43
44 45 1.0
45
46 47 1.0 48 1.5
47
48 49 1.0
49

Optimized S_0 geometry of ${f 5}$

Re	0.00001500	2.14729600	0.00002700
Ν	0.50920000	0.47879800	1.34512000
Ν	2.08747500	1.82400000	-0.33460000
N	-0.50919600	0.47883900	-1.34510800
Ν	-2.08744600	1.82400600	0.33465600
С	-0.30614700	-0.15115200	2.19181700
С	0.07586900	-1.30128300	2.88804600
С	1.34440100	-1.84756400	2.71605000
С	2.25074100	-1.15305700	1.85767500
С	1.77941300	0.00373200	1.18968400
С	2.63991700	0.74318300	0.30890400
С	3.98981100	0.34927600	0.13532800
С	4.81562200	1.12677900	-0.73139900
С	4.21648000	2.19947400	-1.38508400
С	2.87473000	2.51771900	-1.16894400
С	0.30614200	-0.15109100	-2.19183000
С	-0.07589200	-1.30119500	-2.88809600
С	-1.34442600	-1.84746700	-2.71610700
С	-2.25075100	-1.15298800	-1.85769600
С	-1.77940900	0.00377700	-1.18967700
С	-2.63990100	0.74320900	-0.30886800
С	-3.98979400	0.34930000	-0.13528600
С	-4.81559400	1.12679000	0.73146400
С	-4.21644000	2.19946900	1.38516600
С	-2.87468900	2.51770900	1.16902400
Н	-1.30171600	0.26276700	2.30091800
Н	-0.64470900	-1.78762900	3.53585900
Н	4.79806500	2.82534500	-2.05275000
Н	2.41563200	3.36197700	-1.66740700
Н	1.30171100	0.26282700	-2.30092500
Н	0.64467200	-1.78752100	-3.53594100
Н	-4.79801700	2.82533200	2.05284600
Н	-2.41558000	3.36195100	1.66750400
С	-0.23375200	3.49282300	-1.32213000
С	0.23377100	3.49271900	1.32228900
0	0.32498500	4.31399000	2.15447800
0	-0.32485200	4.31379400	-2.15462700
С	4.43942800	-0.82679000	0.82446100
Н	5.46131600	-1.15470100	0.68022300
С	3.61590400	-1.53889000	1.64616400
Н	3.99937100	-2.41080600	2.16136400
С	-3.61590700	-1.53883800	-1.64616300
Н	-3.99936900	-2.41075700	-2.16136300
С	-4.43941800	-0.82675800	-0.82443000

Н	-5.46129800 -1.15468200 -0.68017100
С	6.25331500 0.84195800 -0.95502100
С	6.74858100 0.74221800 -2.26617800
С	7.14852600 0.72110900 0.12215800
С	8.10463700 0.50895600 -2.49427700
Н	6.06323700 0.83017900 -3.10459300
С	8.50541900 0.49605700 -0.10954800
Н	6.78400600 0.82911200 1.13947100
С	8.98617700 0.38473500 -1.41705200
Н	8.47189200 0.42322100 -3.51287300
Н	9.18738000 0.41419900 0.73181700
Н	10.04254400 0.20584200 -1.59544200
С	1.70047800 -3.10540500 3.41576600
С	2.21370200 -4.20805000 2.71081300
С	1.47453600 -3.22458500 4.79724900
С	2.50092400 -5.39943700 3.37673800
Н	2.36400500 -4.13787600 1.63742300
С	1.77184900 -4.41428800 5.46172500
Н	1.08397200 -2.37525100 5.35054700
С	2.28552000 -5.50410100 4.75364800
Н	2.88831800 -6.24689800 2.81875200
Н	1.60406800 -4.48894500 6.53219100
Н	2.51446000 -6.43099600 5.27150100
С	-6.25328800 0.84198100 0.95508400
С	-6.74853200 0.74211700 2.26624000
С	-7.14852400 0.72126400 -0.12209000
С	-8.10459000 0.50886400 2.49434100
Н	-6.06317100 0.82997500 3.10465200
С	-8.50541900 0.49622100 0.10961900
Н	-6.78402300 0.82936600 -1.13939900
С	-8.98615400 0.38477600 1.41712100
Н	-8.47182600 0.42303300 3.51293600
Н	-9.18739800 0.41446700 -0.73174100
Н	-10.04252200 0.20588900 1.59551400
С	-1.70053800 -3.10527200 -3.41587700
С	-2.21379400 -4.20792400 -2.71096100
С	-1.47460600 -3.22440000 -4.79736400
С	-2.50105500 -5.39927700 -3.37693100
Н	-2.36409600 -4.13778300 -1.63756900
С	-1.77196000 -4.41406900 -5.46188400
Н	-1.08401000 -2.37505900 -5.35062700
С	-2.28566000 -5.50389400 -4.75384600
Н	-2.88847500 -6.24674800 -2.81897700
Н	-1.60418600 -4.48869000 -6.53235400

87 88 89

Optimized S_0 geometry of ${f 6}$

Re	0.00005100	-0.91537500	0.00017400
Ν	-0.00306300	0.73292900	1.45999800
Ν	-2.06976300	-0.59720500	0.44751500
Ν	0.00299100	0.73208000	-1.46058000
Ν	2.06981600	-0.59729900	-0.44738500
С	1.10003500	1.32074900	1.95649900
С	1.06705900	2.40542900	2.83104900
С	-1.34422200	2.28575400	2.68633600
С	-1.22821500	1.19439600	1.81743500
С	-2.37395800	0.46496800	1.25002800
С	-3.70702000	0.80685900	1.50278400
С	-4.43037200	-1.03882200	0.12876300
С	-3.08328500	-1.31978800	-0.08277500
С	-1.10016500	1.31960000	-1.95730500
С	-1.06730600	2.40414300	-2.83202200
С	1.34399200	2.28475400	-2.68728600
С	1.22809600	1.19362800	-1.81807700
С	2.37391000	0.46453300	-1.25039100
С	3.70694200	0.80642100	-1.50332000
С	4.43046500	-1.03861000	-0.12851300
С	3.08340800	-1.31957800	0.08319100
Н	2.04450000	0.89730900	1.63546300
Н	-2.31833000	2.66127600	2.97368100
Н	-3.94211100	1.65451100	2.13429800
Н	-2.78476400	-2.15438100	-0.70451300
Н	-2.04457500	0.89598000	-1.63635600
Н	2.31806100	2.66027100	-2.97476700
Н	3.94195300	1.65381300	-2.13521300
Н	2.78495900	-2.15390900	0.70531600
С	-0.25016000	-2.26116000	-1.31867000
С	0.25040300	-2.26015700	1.32001700
0	0.46329200	-3.08192000	2.12947700
0	-0.46297500	-3.08360100	-2.12746200

С	-4.73405100	0.06155100	0.94300500
Н	-5.76850600	0.32784600	1.13830400
С	0.19882700	2.88819000	-3.18964000
Н	0.28644500	3.73425600	-3.86507800
С	4.73404200	0.06144200	-0.94323100
Н	5.76847300	0.32774500	-1.13864700
С	-0.19912200	2.88944300	3.18853500
Н	-0.28684000	3.73570500	3.86371600
С	2.33484800	3.01976300	3.36134600
Н	2.36524000	2.96217700	4.45545600
Н	3.22137300	2.51342600	2.96921400
Н	2.39722400	4.07978200	3.08974400
С	-5.50762000	-1.88303400	-0.49823100
Н	-6.13459800	-1.27866100	-1.16408500
Н	-5.08665300	-2.70740900	-1.08036800
Н	-6.16390900	-2.30656300	0.27052000
С	5.50779400	-1.88253200	0.49873300
Н	6.13542800	-1.27767800	1.16352700
Н	5.08688800	-2.70612800	1.08201500
Н	6.16342900	-2.30715000	-0.26998000
С	-2.33517000	3.01859400	-3.36200900
Н	-2.36322300	2.96643800	-4.45643000
Н	-3.22153100	2.50874200	-2.97407500
Н	-2.40011700	4.07714700	-3.08522700

1 30 1.0 31 1.0 2 1.0 5 1.0 3 1.0 4 1.0 261.591.5 3 10 1.5 13 1.5 4 14 1.5 17 1.5 5 18 1.5 21 1.5 671.5221.0 7 40 1.5 42 1.0 8 9 1.5 23 1.0 40 1.5 9 10 1.0 10 11 1.5 11 24 1.0 34 1.5 12 13 1.5 34 1.5 46 1.0 13 25 1.0 14 15 1.5 26 1.0 15 36 1.5 54 1.0 16 17 1.5 27 1.0 36 1.5 17 18 1.0 18 19 1.5 19 28 1.0 38 1.5

Optimized S_0 geometry of $\mathbf{7}$

Re 0.00032900 -1.75868200 0.00010100

Ν	0.48512700	-0.09685300	-1.36038200
Ν	2.09665700	-1.43099300	0.27011100
Ν	-0.48518500	-0.09705100	1.36051100
Ν	-2.09608000	-1.43175500	-0.27009900
С	-0.37688500	0.50904200	-2.19202900
С	-0.04408700	1.63214700	-2.93916600
С	1.23982000	2.18277700	-2.83888800
С	2.13151500	1.52900900	-1.97693800
С	1.74654700	0.40022800	-1.25613300
С	2.64725900	-0.34470400	-0.35292600
С	3.97780100	0.01056900	-0.13993600
С	4.81005800	-0.72876700	0.70993400
С	4.22494000	-1.84596000	1.31959400
С	2.89409300	-2.15783600	1.08068700
С	0.37650300	0.50895000	2.19241700
С	0.04309200	1.63156300	2.94001000
С	-1.24112900	2.18151500	2.83998200
С	-2.13243500	1.52771000	1.97765700
С	-1.74682100	0.39947400	1.25633300
С	-2.64706400	-0.34552100	0.35270700
С	-3.97750100	0.00971300	0.13901800
С	-4.80932800	-0.72972000	-0.71118900
С	-4.22389300	-1.84698200	-1.32042500
С	-2.89312700	-2.15874600	-1.08092200
Н	-1.36704600	0.07312800	-2.25145900
Н	-0.79920000	2.06035800	-3.58533700
Н	3.13880600	1.90839800	-1.86827700
Н	4.37498100	0.88003200	-0.64725000
Н	4.78343200	-2.48906000	1.98738400
Н	2.43060700	-3.01505100	1.55163700
Н	1.36688100	0.07350000	2.25168800
Н	0.79796000	2.05992500	3.58636500
Н	-3.13993600	1.90660900	1.86916400
Н	-4.37488400	0.87929400	0.64596800
Н	-4.78204900	-2.49018200	-1.98839500
Н	-2.42937100	-3.01595700	-1.55161500
С	-0.19975200	-3.10252600	1.32766200
С	0.20100800	-3.10266800	-1.32723400
0	0.26678600	-3.92437300	-2.16255900
0	-0.26520500	-3.92412500	2.16311700
С	6.26585000	-0.30613600	0.92857700
С	1.69049600	3.42670100	-3.61157400
С	7.00336800	-1.25334700	1.89203600
Н	7.03928900	-2.27819100	1.50589000

Н	8.03551900	-0.91103400	2.01913100
Н	6.53550300	-1.27078600	2.88286300
С	6.28972100	1.12169400	1.52487200
Н	5.81858100	1.85207700	0.85882100
Н	5.76812500	1.15214200	2.48811800
Н	7.32620800	1.43800200	1.68662700
С	7.00255400	-0.31424700	-0.43226800
Н	8.04539300	-0.00938300	-0.28999800
Н	6.99560000	-1.31679000	-0.87417900
Н	6.54751300	0.37703100	-1.14932600
С	2.13257400	4.51332600	-2.60220700
Н	2.96769000	4.17954600	-1.97740300
Н	2.45917900	5.40804800	-3.14366900
Н	1.30444500	4.79556800	-1.94251600
С	2.88289700	3.04781900	-4.52223300
Н	3.21608600	3.92988300	-5.08025700
Н	3.73627700	2.67514500	-3.94614800
Н	2.59479200	2.27454200	-5.24281400
С	0.56371000	4.00193500	-4.48850000
Н	0.22960200	3.28323800	-5.24521600
Н	-0.30250200	4.30488200	-3.88937900
Н	0.92964200	4.88979500	-5.01410800
С	-1.69254900	3.42471700	3.61339800
С	-0.56607300	4.00017300	4.49057300
Н	-0.23150700	3.28130800	5.24693000
Н	0.29994100	4.30390900	3.89156200
Н	-0.93249600	4.88756700	5.01662300
С	-2.13547900	4.51163500	2.60475200
Н	-1.30760500	4.79487500	1.94516800
Н	-2.97040300	4.17763600	1.97981200
Н	-2.46268400	5.40578100	3.14680200
С	-2.88463000	3.04445200	4.52394000
Н	-2.59593600	2.27097200	5.24406400
Н	-3.21841900	3.92596000	5.08248600
Н	-3.73776100	2.67149600	3.94767000
С	-6.26495900	-0.30701700	-0.93076900
С	-7.00241800	-0.31432400	0.42966500
Н	-6.54773100	0.37727900	1.14663500
Н	-8.04513700	-0.00941100	0.28662700
Н	-6.99583700	-1.31664000	0.87210100
С	-6.28824700	1.12052900	-1.52776600
Н	-5.81722700	1.85110700	-0.86184300
Н	-5.76620800	1.15039800	-2.49078900
Н	-7.32458900	1.43699500	-1.69014600

С	-7.00212500	-1.25457000	-1.89416900
Н	-7.03836300	-2.27923800	-1.50758300
Н	-8.03417100	-0.91218500	-2.02192800
Н	-6.53378400	-1.27251300	-2.88476100
1 38 1.0 39	9 1.0		
2 6 1.5 10	1.5		
3 11 1.5 1	5 1.5		
4 16 1.5 20	0 1.5		
5 21 1.5 2	5 1.5		
671.526	1.0		
781.527	1.0		
891.543	1.0		
9 10 1.5 28	8 1.0		
10 11 1.0			
11 12 1.5	20.4.0		
12 13 1.5	29 1.0		
	42 1.0		
14 15 1.5 :	30 1.0		
15 51 1.0	2210		
17 10 1 5 3	52 I.U 22 1 0		
10 10 1.5	55 1.0 58 1 0		
10 19 1.5 (30 1.0 34 1 0		
20 21 1 0	54 1.0		
20 21 1.0			
21 22 1.5	3510		
22 23 1.5	81 1 0		
24 25 1.5	36 1.0		
25 37 1.0			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38 41 2.0			
39 40 2.0			

Optimized S_0 geometry of ${f 8}$

Re	0.00006800	0.84855500	-0.00004100
Ν	0.47211600	-0.80210200	1.37793700
Ν	2.10494100	0.53992300	-0.22926500
Ν	-0.47251700	-0.80135300	-1.37877400
Ν	-2.10492200	0.54077300	0.22910600
С	-0.41497100	-1.39822200	2.19500600
С	-0.08660100	-2.49462000	2.98269200
С	1.21367700	-2.99575700	2.91785400
С	2.13747900	-2.37657700	2.08138200
С	1.74677400	-1.27090800	1.31858100
С	2.65575100	-0.52612000	0.42743600
С	4.00341000	-0.85955900	0.25827300
С	4.80780900	-0.09870900	-0.58231100
С	4.24302200	0.99569300	-1.23836800
С	2.89991400	1.27961400	-1.03679400
С	0.41433200	-1.39744000	-2.19612300
С	0.08567500	-2.49378300	-2.98375400
С	-1.21466000	-2.99474900	-2.91863700
С	-2.13823500	-2.37555600	-2.08191300
С	-1.74721600	-1.27001500	-1.31905900
С	-2.65589200	-0.52526900	-0.42747700
С	-4.00335200	-0.85904900	-0.25745000
С	-4.80742300	-0.09842700	0.58368000
С	-4.24255100	0.99622300	1.23924800
С	-2.89962200	1.28045900	1.03686400
Н	-1.41096100	-0.97284100	2.20672400
Н	-0.83638600	-2.94015500	3.62637500
Н	3.15098300	-2.75303700	2.02847600

Н	4.42465200	-1.70854900	0.78147000
Н	4.82695000	1.62548400	-1.89990300
Н	2.42242600	2.11687000	-1.52827100
Н	1.41034500	-0.97211200	-2.20798900
Н	0.83524700	-2.93942900	-3.62760500
Н	-3.15180400	-2.75186500	-2.02896200
Н	-4.42459600	-1.70821000	-0.78034900
Н	-4.82624500	1.62595300	1.90104400
Н	-2.42207300	2.11799400	1.52781600
Н	1.50833200	-3.85354000	3.51323400
Н	5.85357700	-0.35269500	-0.71790600
Н	-5.85298000	-0.35283000	0.72010800
Н	-1.50951500	-3.85249900	-3.51397100
С	-0.18067700	2.19479800	-1.33138000
С	0.18166600	2.19405700	1.33200600
0	0.23466500	3.01501800	2.16692400
0	-0.23344200	3.01656300	-2.16552500

1 42 1.0 43 1.0 3 1.0 2 1.0 4 1.0 5 1.0

261.5101.5 3 11 1.5 15 1.5 4 16 1.5 20 1.5 5 21 1.5 25 1.5 671.5261.0 781.5271.0 891.5381.0 9 10 1.5 28 1.0 10 11 1.0 11 12 1.5 12 13 1.5 29 1.0 13 14 1.5 39 1.0 14 15 1.5 30 1.0 15 31 1.0 16 17 1.5 32 1.0 17 18 1.5 33 1.0 18 19 1.5 41 1.0 19 20 1.5 34 1.0 20 21 1.0 21 22 1.5 22 23 1.5 35 1.0 23 24 1.5 40 1.0 24 25 1.5 36 1.0 25 37 1.0 26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 45 3.0
43 44 3.0
44
45

Optimized S_0 geometry of ${f 9}$

Re	-0.00049300	-1.11991200	-0.00039600
Ν	0.49049700	0.53507200	-1.36800400
Ν	2.09991800	-0.80144400	0.25955100
Ν	-0.49013700	0.53276500	1.37031700
Ν	-2.10079700	-0.79975400	-0.25930000
С	-0.37983000	1.14008000	-2.19764500
С	-0.03686000	2.23593200	-2.97376600
С	2.16148800	2.11415700	-2.04607900
С	1.76122200	1.00805400	-1.29117600
С	2.65849300	0.26597200	-0.38402900
С	3.99962700	0.60793100	-0.18801700
С	4.22387900	-1.23477900	1.30506100
С	2.89063800	-1.53095600	1.08133000
С	0.38103700	1.13675900	2.19914700
С	0.04054300	2.23544200	2.97305000
С	-2.15784500	2.11662800	2.04508300
С	-1.76032900	1.00826600	1.29284900
С	-2.65866100	0.26697400	0.38597800
С	-4.00010700	0.60892000	0.19198300

С	-4.22572300	-1.23192200	-1.30325100
С	-2.89226800	-1.52828800	-1.08123800
Н	-1.37822500	0.72065600	-2.22667600
Н	-0.78074500	2.68461800	-3.62389800
Н	3.17603500	2.48625500	-1.97149500
Н	4.41847600	1.46225900	-0.70578500
Н	4.79803600	-1.86179500	1.97936300
Н	2.41416300	-2.37219800	1.56736300
Н	1.37868800	0.71561000	2.22881100
Н	0.78560000	2.68411300	3.62172800
Н	-3.17131500	2.49162600	1.96944300
Н	-4.41864800	1.46232600	0.71154900
Н	-4.80054100	-1.85812900	-1.97774100
Н	-2.41623300	-2.36893800	-1.56872000
С	-0.19728200	-2.46602000	1.32552800
С	0.19559200	-2.46271800	-1.32982300
0	0.25692100	-3.28352500	-2.16618100
0	-0.25899800	-3.28911700	2.15962100
С	1.26501900	2.75216700	-2.90608200
С	4.81475100	-0.13513000	0.66555600
С	-4.81605300	-0.13321600	-0.66161800
С	-1.25943500	2.75490200	2.90362000
С	-1.67554800	3.93383400	3.74110000
Н	-0.87482200	4.67779300	3.79900100
Н	-2.57393100	4.41381500	3.34331400
Н	-1.89415500	3.60895400	4.76613900
С	-6.26346700	0.21335900	-0.88197000
Н	-6.54168600	1.13647400	-0.36655600
Н	-6.47419200	0.33467700	-1.95057300
Н	-6.91019000	-0.59275200	-0.51542000
С	6.26184100	0.21153100	0.88788100
Н	6.53967000	1.13672800	0.37598700
Н	6.47209100	0.32896400	1.95699300
Н	6.90922000	-0.59277200	0.51850100
С	1.67918100	3.93082300	-3.74491700
Н	0.93256600	4.73012200	-3.69131600
Н	2.64565100	4.33257000	-3.42917900
Н	1.76230100	3.63488700	-4.79791300

1 34 1.0 35 1.0 4 1.0 5 1.0 2 1.0 3 1.0 2 6 1.5 9 1.5 3 10 1.5 13 1.5 4 14 1.5 17 1.5 5 18 1.5 21 1.5

50 51 1.0 52 1.0 53 1.0 51 52 53 54 55 1.0 56 1.0 57 1.0 55 56 57

Optimized T_1 geometry of $\mathbf{1}$

Re	0.02569800	1.38684000	0.02429200
Ν	0.26965600	-0.29548200	1.41101100
Ν	2.05370600	1.07842200	-0.02110000
Ν	-0.27243500	-0.30815700	-1.34826900
Ν	-2.11384300	1.06050600	0.02224300
С	-0.65112000	-0.94111400	2.11355100
С	-0.41249000	-2.13449200	2.82891800
С	0.87582900	-2.67954900	2.80538700
С	1.89067800	-2.00467100	2.07010000
С	1.54982900	-0.80238200	1.37802300
С	2.49669900	-0.07956300	0.62554800
С	3.83506200	-0.52091300	0.54071200
С	4.78393100	0.24864300	-0.20601900
С	4.33447700	1.49039900	-0.77950800
С	3.02283800	1.86079300	-0.65648100
С	0.66931100	-0.95340000	-2.03195900
С	0.43170900	-2.12577400	-2.77411100
С	-0.86427800	-2.64947800	-2.80340200
С	-1.88637700	-1.96248500	-2.08500300
С	-1.54307000	-0.79521400	-1.37042000
С	-2.53107800	-0.06454500	-0.63505500
С	-3.87420700	-0.49661300	-0.61011000
С	-4.82912500	0.26617100	0.12269200
С	-4.38915500	1.42563400	0.77074000
С	-3.03068300	1.77500700	0.68427600
Н	-1.64282300	-0.50050100	2.11604200
Н	2.65305900	2.78845400	-1.07457500
Н	1.66335200	-0.52413000	-1.98507900

Н	-2.66777000	2.66892600	1.17784700
С	-0.04624300	2.75317700	-1.32302100
С	0.06633800	2.83688700	1.31281300
0	0.05344300	3.71598600	2.07050700
0	-0.07257400	3.58137300	-2.14054200
С	4.16366700	-1.73074200	1.23291500
Н	5.18282900	-2.09773600	1.18530300
С	3.23784000	-2.44291100	1.96500000
Н	3.54995900	-3.35011800	2.47004300
С	-3.25665900	-2.38919900	-2.03686500
н	-3.55106500	-3.28399600	-2.57242600
С	-4.19975800	-1.69342200	-1.33596200
н	-5.22246500	-2.05077300	-1.33120300
С	-1.56344400	-2.76389300	3.57898100
н	-2.47746600	-2.17539200	3.45473000
н	-1.77293700	-3.77913200	3.22223200
н	-1.35794500	-2.83153500	4.65356900
С	1.21280700	-3.95369000	3.53736300
н	1.58837400	-4.71255800	2.84085700
н	2.00290000	-3.77729800	4.27668400
н	0.35364900	-4.37448000	4.05986600
С	6.20484400	-0.22720400	-0.32430800
н	6.69702000	-0.27943500	0.65821300
н	6.25466100	-1.23904900	-0.75041600
н	6.80938600	0.42416200	-0.95728900
С	5.28519700	2.40371400	-1.51401300
н	6.12350700	2.70838700	-0.87551400
н	5.71513200	1.91158100	-2.39542900
н	4.77536900	3.31021300	-1.85343200
С	1.59361700	-2.76347100	-3.49689700
н	2.51356300	-2.19555900	-3.33391700
н	1.76635500	-3.78764900	-3.14805900
н	1.41478000	-2.80911300	-4.57684900
С	-1.20280800	-3.90297300	-3.56648900
н	-1.61794900	-4.66417900	-2.89567600
н	-1.96075300	-3.69731900	-4.33154200
н	-0.33408400	-4.33341100	-4.06386200
С	-5.31042300	2.32510200	1.55927300

Н	-5.77602300	1.78768400	2.39274500
Н	-4.76475000	3.17676800	1.97397000
Н	-6.11624000	2.71801300	0.92955300
С	-6.26576700	-0.18144400	0.17209600
Н	-6.69414100	-0.22062800	-0.83655100
н	-6.34298300	-1.18966700	0.59548300
н	-6.88634600	0.48225900	0.77332000

69 70 71 1.0 72 1.0 73 1.0 71 72 73

Optimized T_1 geometry of $\mathbf{2}$

Re	0.02872100	1.34847500	0.01513300
Ν	0.51446500	-0.32464600	1.33898000
Ν	2.01850500	1.04275800	-0.39448700
Ν	-0.51389700	-0.34479700	-1.28320300
Ν	-2.07704100	1.03566700	0.38971600
С	-0.26752400	-0.96803800	2.19941700
С	0.13168800	-2.13568600	2.86678200
С	1.39598900	-2.67833400	2.64855200
С	2.25963900	-2.00868300	1.74345700
С	1.78324700	-0.82159200	1.09915600
С	2.58140400	-0.10341400	0.19051900
С	3.90037000	-0.53049500	-0.10048300
С	4.70038400	0.24131000	-0.99206100
С	4.12942700	1.44652400	-1.50182400
С	2.85456100	1.82282400	-1.19360100
С	0.29038500	-0.99364300	-2.12344900
С	-0.11503900	-2.14840100	-2.80613400
С	-1.38930300	-2.66766000	-2.63085400
С	-2.26430200	-1.97714800	-1.74025100
С	-1.77868300	-0.81989600	-1.09033600
С	-2.61726700	-0.08360800	-0.19144900
С	-3.94248400	-0.50771100	0.05584600
С	-4.74638400	0.26162500	0.94809700
С	-4.17338600	1.39800600	1.50285000
С	-2.85614100	1.75957000	1.20314900
Н	-1.25219100	-0.54474500	2.36708300
Н	-0.56180000	-2.60779400	3.55386500
Н	4.72183900	2.08782400	-2.14714100
Н	2.41241000	2.73517800	-1.57241400
Н	1.28436100	-0.58218000	-2.25129000
Н	0.58979400	-2.63168300	-3.47379200
Н	-4.74129000	2.02777900	2.17889900
Н	-2.41086700	2.64880300	1.63239000
С	-0.29331700	2.72081400	-1.29403400
С	0.32002000	2.80307100	1.26922800

0.46170600	3.68511300	2.00858800
-0.47577600	3.55211100	-2.08688400
4.36066900	-1.72536000	0.54407200
5.36493000	-2.07548500	0.33165000
3.57854500	-2.43407800	1.42562600
3.97702500	-3.32950800	1.89005900
-3.60863100	-2.39160200	-1.46501200
-3.99638900	-3.27910100	-1.95138900
-4.40844300	-1.69097900	-0.60774500
-5.42081800	-2.03147700	-0.42460000
-1.83215500	-3.90911700	-3.35408500
-2.12425900	-4.69198900	-2.64454100
-2.70291200	-3.70331300	-3.98748300
-1.03311300	-4.30116500	-3.98734100
-6.16017200	-0.13484500	1.26856300
-6.77602000	-0.15546100	0.36173400
-6.19565400	-1.13874500	1.70774900
-6.61426700	0.56405700	1.97449000
1.82841200	-3.93440600	3.35732900
2.08914100	-4.72086500	2.63938200
2.71722700	-3.75222800	3.97278200
1.03544700	-4.31366900	4.00672600
6.10068600	-0.16663000	-1.34985300
6.75046800	-0.21602300	-0.46446500
6.12929900	-1.16170300	-1.81532400
6.54875400	0.54270900	-2.05154800
	0.46170600 -0.47577600 4.36066900 5.36493000 3.57854500 3.97702500 -3.60863100 -3.99638900 -4.40844300 -5.42081800 -1.83215500 -2.12425900 -2.70291200 -1.03311300 -6.16017200 -6.16017200 -6.19565400 -6.61426700 1.82841200 2.08914100 2.71722700 1.03544700 6.10068600 6.75046800 6.75046800 6.12929900 6.54875400	0.461706003.68511300-0.475776003.552111004.36066900-1.725360005.36493000-2.075485003.57854500-2.434078003.97702500-3.32950800-3.60863100-2.39160200-3.99638900-3.27910100-4.40844300-1.69097900-5.42081800-2.03147700-1.83215500-3.90911700-2.12425900-4.69198900-2.70291200-3.70331300-1.03311300-4.30116500-6.16017200-0.13484500-6.19565400-1.13874500-6.614267000.564057001.82841200-3.934406002.08914100-4.720865002.71722700-3.752228001.03544700-4.313669006.10068600-0.166630006.75046800-0.216023006.12929900-1.161703006.548754000.54270900

1 3 1.0 34 1.0 35 1.0

2 6 1.5 10 1.0 3 11 1.0 15 1.0 4 16 1.5 20 1.5 5 21 1.5 25 1.5 671.5261.0 7 8 1.5 27 1.0 891.5541.0 9 10 1.5 40 1.5 10 11 1.5 11 12 1.5 12 13 1.5 38 1.5 13 14 1.5 58 1.0 14 15 2.0 28 1.0 15 29 1.0 16 17 1.5 30 1.0 17 18 1.5 31 1.0

18 19 1.5 46 1.0
19 20 1.5 42 1.5
20 21 1.5
21 22 1.5
22 23 1.5 44 1.5
23 24 1.5 50 1.0
24 25 1.5 32 1.0
25 33 1.0
26
27
28
29
30
31
32
33
34 37 2.0
35 36 2.0
36
37
38 39 1.0 40 2.0
39
40 41 1.0
41 42 43 1 0 44 2 0
43
44 45 1.0
45
46 47 1.0 48 1.0 49 1.0
47
48
49
50 51 1.0 52 1.0 53 1.0
51
52
53
54 55 1.0 56 1.0 57 1.0
55
56
57
58 59 1.0 60 1.0 61 1.0
59
60
61

Optimized T_1 geometry of **3**

Re	0.02227500	1.42556000	0.00790400
Ν	0.65947900	-0.22966900	1.27034900
Ν	1.96220300	1.12221000	-0.64091100
Ν	-0.65645300	-0.27886400	-1.21553000
Ν	-2.02638400	1.11999600	0.60980200
С	-0.02408700	-0.86470700	2.22961000
С	0.45915300	-2.00894100	2.86039300
С	1.70732000	-2.52177600	2.48736600
С	2.46578700	-1.88809500	1.49460100
С	1.90115800	-0.71938900	0.89484000
С	2.58836800	-0.01869800	-0.09965700
С	3.87421100	-0.44656900	-0.52209000
С	4.53358700	0.33135600	-1.48721500
С	3.92392500	1.52147200	-1.97535000
С	2.68122000	1.88674300	-1.53566300
С	0.06031200	-0.92863600	-2.13185000
С	-0.42236100	-2.08724600	-2.75586000
С	-1.67129700	-2.57438600	-2.41821300
С	-2.46063900	-1.90273500	-1.45286100
С	-1.89242300	-0.74512400	-0.87877000
С	-2.62487200	-0.00136100	0.09667500
С	-3.91507800	-0.42847100	0.47805700
С	-4.58497600	0.36866500	1.43743700
С	-3.98060900	1.50915100	1.93619300
С	-2.70181000	1.86420600	1.49636900
Н	-0.98407600	-0.43735600	2.49819100
Н	-0.13394900	-2.48549700	3.63219800
Н	4.44100900	2.14762800	-2.69384300
Н	2.18655100	2.78492400	-1.88384200
Н	1.03298600	-0.51435500	-2.36638300
Н	0.19245200	-2.58819300	-3.49465400
Н	-4.48348900	2.13711000	2.66246200
н	-2.20454500	2.75420000	1.86091500
н	2.08009700	-3.41128100	2.98114700
Н	5.51552400	0.05668100	-1.84942200

Н	-5.57540400	0.09950700	1.78218200
Н	-2.03936100	-3.47108200	-2.90114800
С	-0.47239900	2.80619000	-1.24982200
С	0.49279800	2.88974800	1.19618200
0	0.75283600	3.77616600	1.89530000
0	-0.76252500	3.64072000	-2.00403900
С	4.44878500	-1.64957400	0.07061500
С	3.76862700	-2.34571300	1.05094200
С	-3.78227300	-2.34740000	-1.04641300
С	-4.49147100	-1.62853600	-0.10541600
С	4.30805100	-3.58966300	1.72259500
Н	4.40212300	-3.43593200	2.80434000
Н	3.62865600	-4.43787300	1.57562500
Н	5.28671900	-3.88885800	1.35271700
С	5.81012200	-2.05402600	-0.44820600
Н	6.54953700	-1.26761100	-0.25196300
Н	6.18674100	-2.97344400	-0.00409600
Н	5.78203800	-2.20279700	-1.53456100
С	-4.29892800	-3.60475500	-1.70707500
Н	-4.35479000	-3.47717700	-2.79448000
Н	-3.62747100	-4.44928500	-1.51207900
Н	-5.29008300	-3.89249400	-1.36371800
С	-5.87278100	-2.01033300	0.37555900
Н	-6.59282500	-1.21071600	0.16470100
Н	-6.25176400	-2.91713400	-0.09053800
Н	-5.87620800	-2.17518700	1.45955800

12	13	1.5	42	1.0	
13	14	1.5	35	1.0	
14	15	2.0	28	1.0	
15	29	1.0			
16	17	1.5	30	1.0	
17	18	2.0	31	1.0	
18	19	1.5	37	1.0	
19	20	1.5	44	1.0	
20	21	1.5			
21	22	1.5			
22	23	1.5	45	1.0	
23	24	2.0	36	1.0	
24	25	1.5	32	1.0	
25	33	1.0			
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38	41	2.0			
39	40	2.0			
40					
41					
42	43	2.0	50	1.0	
43	46	1.0			
44	45	2.0	54	1.0	
45	58	1.0			
46	47	1.0	48	1.0	49 1.0
47					
48					
49					

Optimized T_1 geometry of ${f 4}$

Re	0 02303200	-1 10167100	-0.01256200
N	0.02303200	0.00074000	1 26282200
IN	-0.56230200	0.60354000	1.26382200
Ν	-2.06620200	-0.79718300	-0.47622900
Ν	0.56243900	0.56119300	-1.32023500
Ν	2.00183300	-0.80018600	0.50139900
С	0.21030000	1.26422600	2.12576800
С	-0.23278800	2.41915800	2.79254800
С	-1.50919000	2.89340000	2.55704000
С	-2.35177900	2.20724600	1.65315200
С	-1.82561700	1.05606700	1.02348100
С	-2.62594600	0.31430100	0.09857300
С	-3.94745900	0.73007200	-0.18141500
С	-4.69729600	-0.04621200	-1.09308400
С	-4.12554300	-1.17241000	-1.65679300
С	-2.81062100	-1.52421800	-1.32126600
С	-0.18030700	1.20940100	-2.22334300
С	0.26009500	2.35880000	-2.88671000
С	1.53224800	2.86389500	-2.60572300
С	2.34748900	2.21289800	-1.67261700
С	1.83013100	1.04193700	-1.03237100
С	2.58615200	0.33617600	-0.08817500
С	3.90198100	0.75610200	0.24199900
С	4.64168600	-0.00851800	1.15777900

С	4.06677400	-1.19597700	1.69205200
С	2.79366600	-1.56155500	1.34458700
Н	1.20319600	0.86219100	2.28524500
Н	0.43673200	2.92094900	3.48140900
Н	-4.67475800	-1.79513600	-2.35326200
Н	-2.34057600	-2.40444800	-1.74200000
Н	-1.16168600	0.79278800	-2.42327900
Н	-0.39060100	2.83814300	-3.60859400
Н	4.63109300	-1.82390000	2.37254800
Н	2.32710200	-2.45903900	1.73091200
Н	-1.87334000	3.78432300	3.05918100
Н	-5.71475300	0.24360400	-1.33629200
Н	5.64879400	0.29118600	1.42802400
Н	1.89712200	3.75491300	-3.10860100
С	0.39546000	-2.56656900	-1.23421500
С	-0.37278500	-2.47925800	1.28079700
0	-0.60414600	-3.31165800	2.05704200
0	0.59726900	-3.45332400	-1.95149400
С	-4.45775900	1.90581200	0.46547800
Н	-5.47219700	2.21829700	0.23912400
С	-3.69251700	2.61496100	1.34525300
Н	-4.08758700	3.50201500	1.83025700
С	3.66697000	2.63797200	-1.31529300
Н	4.07310200	3.52616800	-1.79084100
С	4.40743400	1.94094700	-0.40106200
Н	5.41093700	2.26962400	-0.14594900

12 13 1.5 42 1.5
13 14 2.0 35 1.0
14 15 1.5 28 1.0
15 29 1.0
16 17 1.5 30 1.0
17 18 1.5 31 1.0
18 19 1.5 37 1.0
19 20 1.5 46 1.5
20 21 1.5
21 22 1.5
22 23 1.5 48 1.5
23 24 1.5 36 1.0
24 25 2.0 32 1.0
25 33 1.0
26
27
28
29
30
31
32
33
34
35
36
37
38 41 3.0
39 40 2.0
40
41
42 43 1.0 44 2.0
43
44 45 1.0
45
46 47 1.0 48 2.0
47
48 49 1.0
49

Optimized T_1 geometry of **5**

Re	-0.02779400	2.18834300	-0.06339600
Ν	0.43037800	0.51280100	1.28480000
Ν	2.09490100	1.87715300	-0.28994800
Ν	-0.43797200	0.49280700	-1.37635200
Ν	-2.04637400	1.89237300	0.21761200
С	-0.43237600	-0.12508400	2.07599800
С	-0.09656600	-1.30475200	2.74757800
С	1.16816900	-1.86794200	2.61015700
С	2.12257200	-1.16216200	1.81261600
С	1.69652300	0.02012100	1.16238600
С	2.60221300	0.76900500	0.33901200
С	3.95256600	0.36545100	0.21167300
С	4.82248400	1.16602800	-0.59217900
С	4.26642200	2.27211500	-1.22997500
С	2.92212000	2.60255000	-1.05489900
С	0.40143400	-0.16007600	-2.17845900
С	0.07137500	-1.36450000	-2.80478700
С	-1.18362300	-1.94955000	-2.60030800
С	-2.12041600	-1.24947800	-1.79419600
С	-1.70906000	-0.01928100	-1.18926500
С	-2.57764600	0.73313700	-0.37350300
С	-3.92335200	0.32799000	-0.18231800
С	-4.79167600	1.15050500	0.60299900
С	-4.21158000	2.32698300	1.19008100
С	-2.91326100	2.67180800	0.96976100
Н	-1.42304300	0.30538500	2.15571100
Н	-0.85242400	-1.79883000	3.34719900
Н	4.88497000	2.91698800	-1.84362700
Н	2.49855100	3.47857100	-1.53001600
Н	1.38307700	0.28154500	-2.31258900
Н	0.81518900	-1.86216200	-3.41599200
Н	-4.83496500	2.99373200	1.77536300
Н	-2.48517200	3.57807400	1.37888000
С	-0.24526800	3.62119700	-1.35705600
С	0.21219400	3.58275800	1.24146900

0	0.34152600 4.42603800 2.03181900
0	-0.34551700 4.48959800 -2.11869800
С	4.35754200 -0.83721600 0.88091900
Н	5.37943700 -1.17676800 0.76926400
С	3.48936700 -1.56137500 1.64558900
Н	3.83873900 -2.45461300 2.14815600
С	-3.46138100 -1.66657000 -1.55066900
Н	-3.81849700 -2.58855700 -1.99328900
С	-4.31110700 -0.91929300 -0.77650400
Н	-5.31472200 -1.28611200 -0.60113900
С	6.26458400 0.87361200 -0.76085600
С	6.81942700 0.82645300 -2.05120800
С	7.10536000 0.69352600 0.35173300
С	8.18153100 0.58367400 -2.22505900
Н	6.17601800 0.95981000 -2.91631800
С	8.46899300 0.46234600 0.17378800
Н	6.69435000 0.76259600 1.35454600
С	9.00912100 0.40111400 -1.11377600
Н	8.59573800 0.53648900 -3.22788700
Н	9.10970300 0.33567000 1.04142400
Н	10.07054300 0.21577600 -1.25022000
С	1.47427900 -3.15241200 3.28241100
С	2.00408900 -4.23904900 2.56480300
С	1.18331600 -3.31168200 4.64768600
С	2.24408400 -5.45516300 3.20395400
н	2.20170000 -4.13793100 1.50170300
С	1.43504500 -4.52592700 5.28564800
Н	0.77897600 -2.47501200 5.21021100
С	1.96569100 -5.59987500 4.56583300
Н	2.64370400 -6.29049000 2.63653700
Н	1.21783400 -4.63242000 6.34439400
Н	2.15830800 -6.54615700 5.06289700
С	-6.22187800 0.88340900 0.81001000
С	-6.79495800 1.06697900 2.08755000
С	-7.07709100 0.50172000 -0.24694500
С	-8.15436600 0.85268500 2.30339100
н	-6.15817900 1.35427500 2.91964800
С	-8.43742000 0.29243400 -0.02887400

Н	-6.67678000	0.40858300	-1.25172600
С	-8.98357700	0.46107500	1.24733600
Н	-8.56736300	0.98703600	3.29945200
Н	-9.07581000	0.01023800	-0.86165100
Н	-10.04396600	0.29626300	1.41548500
С	-1.48171300	-3.26061100	-3.22602800
С	-1.95722000	-4.34117700	-2.46252200
С	-1.23889500	-3.45349900	-4.59668900
С	-2.19426800	-5.57948000	-3.05959300
Н	-2.11847600	-4.21390500	-1.39614200
С	-1.48502500	-4.69013000	-5.19303700
Н	-0.87489700	-2.62349900	-5.19574600
С	-1.96367200	-5.75634600	-4.42654200
Н	-2.55397100	-6.40733600	-2.45523700
Н	-1.30468900	-4.82025100	-6.25630800
Н	-2.15259500	-6.72001200	-4.89085700

1 5 1.0 34 1.0 35 1.0

2 6 1.5 10 1.5 3 11 1.5 15 1.5 4 16 1.5 20 1.0 5 21 1.0 25 1.0 671.5261.0 7 8 1.5 27 1.0 891.5571.0 9 10 1.5 40 1.5 10 11 1.5 11 12 1.5 12 13 1.5 38 1.5 13 14 1.5 46 1.0 14 15 1.5 28 1.0 15 29 1.0 16 17 1.5 30 1.0 17 18 1.5 31 1.0 18 19 1.5 79 1.0 19 20 1.5 42 1.5 20 21 1.5 21 22 1.5

22	23	1.5	44	1.5	
23	24	1.5	68	1.0	
24	25	2.0	32	1.0	
25	33	1.0			
26					
27					
28					
29					
30					
31					
32					
33					
34	37	2.0			
35	36	2.0			
36					
37					
38	39	1.0	40	2.0	
39					
40	41	1.0			
41					
42	43	1.0	44	2.0	
43					
44	45	1.0			
45					
46	47	1.5	48	1.5	
47	49	1.5	50	1.0	
48	51	1.5	52	1.0	
49	53	1.5	54	1.0	
50					
51	53	1.5	55	1.0	
52					
53	56	1.0			
54					
55					
56					
57	58	1.5	59	1.5	
58	60	1.5	61	1.0	
59	62	1.5	63	1.0	

Optimized T_1 geometry of ${\bf 6}$

Re	0.01305600	0.91435500	0.01981500
Ν	-0.01680300	-0.75415800	-1.41229000
Ν	-2.07041600	0.62381400	-0.43893800
Ν	-0.01596500	-0.73100200	1.41710700
N	2.03712900	0.61040500	0.36876700

С	1.08305000	-1.36753600	-1.87982800
С	1.03802300	-2.49091000	-2.70610900
С	-1.37328700	-2.33595800	-2.57822500
С	-1.24642600	-1.21891000	-1.74755800
С	-2.38508100	-0.46671200	-1.19449800
С	-3.72251900	-0.80605400	-1.41259100
С	-4.41426600	1.10425200	-0.09989300
С	-3.06131300	1.38759500	0.07139500
С	-1.11385100	-1.34746100	1.91395200
С	-1.07288900	-2.46588100	2.72448300
С	1.34687700	-2.36761700	2.55655700
С	1.24376100	-1.22136900	1.72374800
С	2.34564600	-0.51457000	1.16386500
С	3.70791400	-0.84859700	1.35992400
С	4.39237200	1.09708900	0.06296800
С	3.06455400	1.38543900	-0.11323900
Н	2.02821900	-0.93378500	-1.57690800
Н	-2.35081000	-2.70805700	-2.85775400
Н	-3.97639200	-1.67443400	-2.00728100
н	-2.74413500	2.25303000	0.64044100
н	-2.06441800	-0.90041900	1.64279600
н	2.32469600	-2.75918100	2.81194900
н	3.95930200	-1.72329700	1.94896400
н	2.75387700	2.25786800	-0.67654200
С	-0.08459700	2.36738900	1.30968200
С	0.14705500	2.31906700	-1.31055200
0	0.23034800	3.16622000	-2.10029700
0	-0.14972900	3.24871300	2.05808700
С	-4.73275500	-0.02895500	-0.86108700
Н	-5.77180700	-0.29601600	-1.02849600
С	0.21654500	-2.97800100	3.04290700
Н	0.30406100	-3.85329300	3.68074300
С	4.70915600	-0.07963800	0.82135200
н	5.74901900	-0.34963800	0.98118000
С	-0.23145800	-2.97095700	-3.05177200
н	-0.32660300	-3.84016800	-3.69579200
С	2.30149400	-3.15232200	-3.18659900
Н	3.18558500	-2.56000600	-2.93505500
Н	2.41493600	-4.14243000	-2.72912000
---	-------------	-------------	-------------
Н	2.27845700	-3.29519600	-4.27230300
С	-5.47762500	1.98125400	0.50360000
Н	-6.08635300	1.41313000	1.21632500
Н	-5.04498900	2.83660500	1.02935800
Н	-6.15190500	2.35954600	-0.27276400
С	5.48077900	1.96764700	-0.50420900
Н	6.12110000	1.40179100	-1.19336200
Н	5.06955500	2.82236400	-1.05040800
Н	6.13145200	2.35489000	0.29041700
С	-2.32733100	-3.10768500	3.25364800
Н	-3.22349200	-2.57858500	2.91407800
Н	-2.40753800	-4.15214500	2.92603000
Н	-2.33657800	-3.11569600	4.35104000

151.0301.0311.0 261.591.5 3 10 1.5 13 1.5 4 14 1.5 17 1.0 5 18 1.0 21 1.5 671.5221.0 7 40 1.5 42 1.0 8 9 1.5 23 1.0 40 1.5 9 10 1.0 10 11 1.5 11 24 1.0 34 1.5 12 13 1.5 34 1.5 46 1.0 13 25 1.0 14 15 2.0 26 1.0 15 36 1.5 54 1.0 16 17 1.5 27 1.0 36 2.0 17 18 1.5 18 19 1.5 19 28 1.0 38 2.0 20 21 2.0 38 1.5 50 1.0 21 29 1.0 22 23

24
25
26
27
28
29
30 33 3.0
31 32 2.0
32
33
34 35 1.0
35
36 37 1.0
37
38 39 1.0
39
40 41 1.0
41
42 43 1.0 44 1.0 45 1.0
43
44
45
46 47 1.0 48 1.0 49 1.0
47
48
49
50 51 1.0 52 1.0 53 1.0
51
52
53
54 55 1.0 56 1.0 57 1.0
55
56
57

Optimized T₁ geometry of **7**

Re 0.00171700 -1.88681800 0.04474900

Ν	0.30758000	-0.19233900	-1.32906700
Ν	2.11782700	-1.54869700	0.05010000
Ν	-0.29413000	-0.19613000	1.36160500
Ν	-2.05245300	-1.60092500	-0.04485400
С	-0.66420000	0.42780700	-2.01344200
С	-0.48416100	1.67265100	-2.60771300
С	0.74638300	2.32855800	-2.49908900
С	1.76466900	1.64124300	-1.81858200
С	1.53114300	0.39398500	-1.24793000
С	2.55277000	-0.38194500	-0.51549100
С	3.88166700	0.01009200	-0.40281000
С	4.82109300	-0.76877800	0.29018300
С	4.35048000	-1.97270800	0.83112600
С	3.01709400	-2.32716300	0.68612200
С	0.64700500	0.45303500	2.07596400
С	0.44283600	1.68312800	2.66730400
С	-0.81918000	2.32564600	2.52961500
С	-1.79909600	1.63855800	1.83472800
С	-1.55663400	0.37073600	1.24899700
С	-2.51281700	-0.38695200	0.51013400
С	-3.86044300	-0.01428000	0.30794000
С	-4.76189200	-0.81360200	-0.37139700
С	-4.27504300	-2.07498400	-0.85066600
С	-2.96154700	-2.41295300	-0.66266300
Н	-1.61408700	-0.08875200	-2.06756800
Н	-1.32179600	2.11466300	-3.13061400
Н	2.74145400	2.09587800	-1.71933100
Н	4.19398900	0.93799800	-0.86272100
Н	5.00174300	-2.65087500	1.36628600
Н	2.63784200	-3.25560400	1.09437000
Н	1.60519500	-0.04835000	2.15876500
Н	1.25697400	2.13215600	3.21962100
Н	-2.77981700	2.08230000	1.71261400
н	-4.19005600	0.93486200	0.71307000
Н	-4.91939600	-2.77540100	-1.36400700
н	-2.56824500	-3.35607800	-1.02379100
С	-0.12084300	-3.32075700	1.34616800
С	0.14683900	-3.31181800	-1.26370000

0	0.21974300	-4.17088500	-2.04112600
0	-0.17492300	-4.19265700	2.10762000
С	6.26815000	-0.28952400	0.42403400
С	1.00690900	3.73079100	-3.05592000
С	7.14447400	-1.29945500	1.18648400
Н	7.19214000	-2.26619200	0.67277900
Н	8.16545000	-0.91121100	1.25737300
Н	6.78230600	-1.46387100	2.20748900
С	6.27174200	1.05278900	1.19647000
Н	5.69666400	1.82661400	0.67736100
Н	5.84951600	0.92876400	2.19981500
Н	7.30090400	1.41331600	1.30014500
С	6.86776600	-0.07957400	-0.98722200
Н	7.90546600	0.25936500	-0.89630200
Н	6.86086900	-1.01388200	-1.55905200
Н	6.32125000	0.67649800	-1.56028700
С	1.35106300	4.66892600	-1.87292500
Н	2.24750100	4.33936800	-1.33727800
Н	1.53754100	5.68138500	-2.24748600
Н	0.52297600	4.71494000	-1.15633700
С	2.19768900	3.67700400	-4.04219300
Н	2.38715400	4.67790400	-4.44497600
Н	3.11794900	3.33459400	-3.55787400
Н	1.98276900	3.00534600	-4.88055100
С	-0.21962400	4.29714000	-3.79350000
Н	-0.50464200	3.67255100	-4.64761200
Н	-1.08511000	4.39443000	-3.12849300
Н	0.01599000	5.29526700	-4.17628200
С	-1.10454100	3.72609700	3.09156600
С	0.09901300	4.29812100	3.86351300
н	0.36956600	3.66860200	4.71886000
н	0.97998100	4.40489800	3.22036400
н	-0.15155600	5.29242500	4.24854900
С	-1.42522300	4.67778900	1.91392700
н	-0.57982100	4.73378200	1.21768600
н	-2.30452600	4.34501300	1.35234500
н	-1.62695800	5.68817300	2.28881900
С	-2.31545300	3.66490300	4.05145300

Н	-2.11418000	2.98974000	4.89084600
Н	-2.52455800	4.66188700	4.45661100
Н	-3.22077400	3.31446600	3.54517200
С	-6.20821800	-0.34757300	-0.58144300
С	-6.87396400	-0.09408800	0.79243400
Н	-6.35164800	0.68147300	1.36217700
Н	-7.91005000	0.23557100	0.65116700
Н	-6.88530000	-1.00889100	1.39555300
С	-6.19942000	0.96706600	-1.39871600
Н	-5.65249400	1.76263800	-0.88183800
Н	-5.73150300	0.81415900	-2.37803000
Н	-7.22617400	1.31565200	-1.56089900
С	-7.05017900	-1.38775200	-1.34383200
Н	-7.11478300	-2.33647000	-0.79916700
Н	-8.06984000	-1.00914100	-1.47234000
Н	-6.64283700	-1.58861000	-2.34118700

1 5 1.0 38 1.0 39 1.0

2 6 1.5 10 1.5 3 11 1.5 15 1.5 4 16 1.5 20 1.0 5 21 1.0 25 1.5 671.5261.0 7 8 1.5 27 1.0 891.5431.0 9 10 1.5 28 1.0 10 11 1.0 11 12 1.5 12 13 1.5 29 1.0 13 14 1.5 42 1.0 14 15 1.5 30 1.0 15 31 1.0 16 17 2.0 32 1.0 17 18 1.5 33 1.0 18 19 2.0 68 1.0 19 20 1.5 34 1.0 20 21 1.5 21 22 1.5

22	23	2.0	35	1.0			
23	24	1.5	81	1.0			
24	25	2.0	36	1.0			
25	37	1.0					
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38	41	2.0					
39	40	2.0					
40							
41							
42	44	1.0	48	1.0	52	1.0	
43	56	1.0	60	1.0	64	1.0	
44	45	1.0	46	1.0	47	1.0	
45							
46							
47							
48	49	1.0	50	1.0	51	1.0	
49							
50							
51							
52	53	1.0	54	1.0	55	1.0	
53							
54							
55			_ ~				
56 	57	1.0	58	1.0	59	1.0	
57							
58							
59							

Optimized T_1 geometry of **8**

Re 0.01670400 -0.84438400 -0.01814800

Ν	0.40541900	0.79821400	-1.36554500
Ν	2.06054200	-0.55139000	0.22990100
Ν	-0.42993800	0.83192700	1.33315700
Ν	-2.10917600	-0.56270200	-0.18044400
С	-0.49465000	1.41500100	-2.16355200
С	-0.20024500	2.53858200	-2.90825000
С	1.11260100	3.06662700	-2.83291300
С	2.04718400	2.44963400	-2.03431500
С	1.70029800	1.29457500	-1.28148100
С	2.59071300	0.57984600	-0.43010900
С	3.95359700	0.91156500	-0.22324900
С	4.75888000	0.13140000	0.57128000
С	4.22032300	-1.04112700	1.18199400
С	2.89967400	-1.33727500	0.97551700
С	0.48427800	1.45264600	2.09798500
С	0.17650900	2.57717400	2.85601200
С	-1.12617300	3.07113800	2.81922100
С	-2.07668700	2.42396700	2.03363800
С	-1.70512900	1.29938100	1.29226300
С	-2.63616600	0.53342700	0.44228700
С	-3.98203900	0.86566800	0.27658300
С	-4.79757300	0.07363000	-0.52693900
С	-4.25414500	-1.05444700	-1.14160100
С	-2.91215700	-1.34322000	-0.93697700
Н	-1.48167000	0.96738400	-2.19427600
Н	-0.96135700	2.99024000	-3.53351300
Н	3.05549200	2.84254000	-1.97880300
Н	4.36335900	1.79000400	-0.70794000
Н	4.83248300	-1.69294900	1.79386600
Н	2.44175500	-2.21542000	1.41459400
Н	1.47865800	1.02511600	2.09218600
Н	0.94659800	3.04705200	3.45660000
Н	-3.09343500	2.79365600	2.00459200
Н	-4.39525800	1.73633600	0.76907500
Н	-4.85299500	-1.70801600	-1.76491700
Н	-2.44768600	-2.21284100	-1.38367000
Н	1.38287300	3.94792000	-3.40623900
н	5.80073500	0.39632600	0.71944600

Н	-5.84291400	0.32984700	-0.66124900
Н	-1.40422600	3.94610800	3.39715200
С	-0.24028300	-2.25049600	1.29726100
С	0.29751000	-2.30811900	-1.26908200
0	0.45289900	-3.19700000	-1.99377200
0	-0.38553900	-3.09853600	2.07518500

Optimized T_1 geometry of ${f 9}$

Re	-0.02047700	-1.12845100	0.01733800
Ν	0.41740200	0.55130700	-1.33027800
Ν	2.10165400	-0.83549300	0.17384100
Ν	-0.39724700	0.51680000	1.36656400
Ν	-2.06114500	-0.82931400	-0.21450300
С	-0.49310000	1.17401700	-2.09997100
С	-0.18832000	2.30323300	-2.84483900
С	2.04869800	2.16586600	-2.01439500
С	1.68487000	1.03438500	-1.28169000
С	2.62054200	0.27230500	-0.43193300
С	3.95920500	0.62141700	-0.25338900
С	4.25168700	-1.30086300	1.13498200
С	2.91945100	-1.60910800	0.92345800
С	0.50093500	1.13366100	2.16509400
С	0.21288300	2.26601800	2.89549300
С	-2.01913300	2.19560800	2.01511600
С	-1.68318600	1.02938900	1.27456000
С	-2.57998900	0.31713600	0.42750800
С	-3.93719200	0.66510700	0.21129200
С	-4.22912900	-1.29731600	-1.15548400
С	-2.91499100	-1.61005700	-0.94679000

-1.48545500	0.74143300	-2.10698100
-0.96189300	2.76747900	-3.44721300
3.06499700	2.53770900	-1.97357900
4.35472100	1.50654500	-0.73592800
4.85515100	-1.95522900	1.75479300
2.47024800	-2.49113100	1.36170700
1.48447100	0.67873100	2.20728200
0.97722600	2.71395100	3.52124500
-3.02483700	2.59520800	1.94741400
-4.32975600	1.55901000	0.68328600
-4.85030700	-1.95090600	-1.75792600
-2.47276900	-2.50142200	-1.37566700
-0.27582300	-2.59249600	1.27076800
0.21560200	-2.52819700	-1.30401400
0.34533200	-3.37390000	-2.08888000
-0.41251200	-3.48313000	1.99863000
1.11037600	2.82897200	-2.81010000
4.80438400	-0.15525300	0.54336900
-4.77122200	-0.10420700	-0.56969600
-1.09375800	2.82608200	2.81991800
-1.43201500	4.06319200	3.60834700
-0.77733600	4.89655400	3.32368500
-2.46932500	4.37334100	3.45246600
-1.28158300	3.89349900	4.68185200
-6.21075400	0.25635000	-0.80415000
-6.48572500	1.18715700	-0.29975200
-6.41246100	0.37166100	-1.87707900
-6.87395700	-0.54075900	-0.44346700
6.25018700	0.20178400	0.74666300
6.49717000	1.16637800	0.29626500
6.49057500	0.24150700	1.81483100
6.89587800	-0.56317600	0.29892500
1.47106100	4.05887900	-3.59763100
0.92084900	4.92764300	-3.21712000
2.54018200	4.27850600	-3.54079700
1.19491800	3.93784000	-4.65088200
	 -1.48545500 -0.96189300 3.06499700 4.35472100 4.85515100 2.47024800 1.48447100 0.97722600 -3.02483700 -4.32975600 -4.32975600 -4.85030700 -2.47276900 -0.27582300 0.21560200 0.34533200 -0.41251200 1.1037600 4.80438400 -4.77122200 -1.43201500 -1.43201500 -1.43201500 -1.28158300 -1.28158300 -6.21075400 -6.41246100 -6.47395700 6.25018700 6.49717000 6.49717000 6.4957500 6.4957500 6.4957500 6.4957500 6.4957500 2.54018200 1.19491800 	-1.485455000.74143300-0.961893002.767479003.064997002.537709004.354721001.506545004.85515100-1.955229002.47024800-2.491131001.484471000.678731000.977226002.71395100-3.024837002.59520800-4.329756001.55901000-4.85030700-1.95090600-2.47276900-2.501422000.21560200-2.528197000.34533200-3.373900000.34533200-3.483130001.110376002.828972004.80438400-0.15525300-4.77122200-0.10420700-1.432015004.86439200-1.432015004.89655400-2.469325004.37334100-1.281583003.89349900-6.412461000.37166100-6.435725001.187157006.497170001.166378006.497170001.166378006.490575000.241507006.49587800-0.563176001.471061004.058879000.920849004.927643002.540182003.93784000

1 5 1.0 34 1.0 35 1.0

Reference for the Electronic Supplementary Information

S1. J. L. Smithback, J. B. Helms, E. Schutte, S. M. Woessner and B. P. Sullivan, *Inorg. Chem.*, 2006, **45**, 2163-2174.