Electronic Supplementary Information (ESI) for

A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal-organic frameworks, MOFs

Alexander Nuhnen and Christoph Janiak*

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf Germany. Email: janiak@hhu.de

Content

- S1. Clausius-Clapeyron equation
- S2. Virial equation
- S3. Freundlich-Langmuir fit of *n* vs. *p* isotherms
- S4. MOF structures
- S5. CO2 adsorption isotherms with Freundlich-Langmuir fit of MIL-160 at 273 K, 283 K and 293 K
- S6. SO₂ adsorption isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K
- S7. Virial analysis for SO₂ isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K with a larger number of a_i and b_i fit parameters
- S8. Enthalpy of adsorption for CO₂ on MIL-100(Cr)

References

S1. Clausius-Clapeyron equation

The thermodynamic equation (S1)

$$\frac{dp}{dT} = \frac{\Delta H_{ads}}{\Delta V \cdot T} \tag{S1}$$

with

p = vapor pressure

T = absolute temperature in K(elvin)

 ΔH_{ads} = (molar) enthalpy of adsorption in kJ mol⁻¹

 $\Delta V = V_{ads} - V_{g}$, difference of the (molar) volume between the final adsorbed phase and the starting gaseous phase

can be approximated

with $\Delta V \approx -V_g$ since the volume of a gas is much higher than the molar volume of the liquid-like adsorbed phase

$$\frac{dp}{dT} = \frac{\Delta H_{ads}}{-V_g \cdot T} \tag{S2}$$

Further, for the gaseous phase of 1 mol an ideal gas behavior (with the equation of state pV = RT) is assumed, and

$$V_g = \frac{RT}{p} \tag{S3}$$

is substituted to give the Clausius-Clapeyron equation:

$$\frac{dp}{dT} = \frac{p \cdot \Delta H_{ads}}{-RT^2} \quad \text{or} \quad \frac{dp}{p} = \frac{\Delta H_{ads}}{-RT^2} dT \tag{S4}$$

(universal gas constant $R = 8.314 \text{ J K}^{-1} \cdot \text{mol}^{-1}$)

If the enthalpy of adsorption is taken as constant over a small temperature interval from T_1 to T_2 , the integrated form of the Clausius-Clapeyron equation can be obtained:

$$\ln \frac{p_2}{p_1} = \frac{\Delta H_{ads}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
(S5)

$$\left(\int_{T_1}^{T_2} \frac{1}{T^2} dt = -\frac{1}{T_2} - \left(-\frac{1}{T_1}\right)\right)$$
(S6)

The difference of the two quotients can be rewritten:

$$\ln \frac{p_2}{p_1} = \frac{\Delta H_{ads}}{R} \left(\frac{T_1 - T_2}{T_2 \cdot T_1} \right) \tag{S7}$$

or by exchanging T_1 and T_2 in the numerator:

$$\ln \frac{p_2}{p_1} = -\frac{\Delta H_{ads}}{R} \left(\frac{T_2 - T_1}{T_2 \cdot T_1} \right)$$
(S8)

From this we obtain Eq. (1) in the manuscript

$$\Delta H_{ads}(n) = -R \cdot \ln\left(\frac{p_2}{p_1}\right) \left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right)$$
(S9)

 $\Delta H_{ads}(n)$ is typically written as ΔH_{ads} only but as the isosteric heat of adsorption it is a function of the gas uptake (the loading) *n*. We introduce $\Delta H_{ads}(n)$ here as in the following we will explicitly calculate the isosteric enthalpy of adsorption as a function of loading n.

Note,

(i) when comparing the aforementioned four equations to literature, pay attention to the order of T_1 and T_2 in the difference, which affects the (minus/plus) sign on the right side of the equation.

$$\left(\frac{1}{T_2} - \frac{1}{T_1}\right) = -\left(\frac{1}{T_1} - \frac{1}{T_2}\right) and \left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right) = -\left(\frac{T_1 \cdot T_2}{T_1 - T_2}\right)$$
 (S10)

(ii) Often the Clausius-Clapeyron equation (1) is written in the literature as

$$Q_{st} = -R \cdot \ln\left(\frac{p_2}{p_1}\right) \left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right)$$
(S11)

The use of the symbol Q_{st} which stands for "isosteric heat of adsorption" is misleading (see Section S2 below), especially if at the same time the minus-sign on the right side of the equation is kept.

From the equation

$$\ln \frac{p_2}{p_1} = \frac{\Delta H_{ads}(n)}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
(S12)

 $\Delta H_{ads}(n)$ can be obtained from two experimental adsorption isotherms which were measured at two temperatures T_1 and T_2 . Note that T_1 and T_2 are different but should be close. Most often a temperature difference of 10-20 K is used.

Each adsorption isotherm consists of $n_i | p_i$ data points. For an equal uptake of *n* the data triple $n | p_1 | p_2$ is used.

For a given value of *n*, the data pairs $\ln p_2 | 1/T_2$ and $\ln p_1 | 1/T_1$ define a straight line with the negative slope

$$\frac{\Delta H_{ads}(n)}{R} = \frac{\ln p_2 - \ln p_1}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right)} < 0$$
(S13)

For an adsorption process $T_2 > T_1$ correlates with $p_2 > p_1$, that is, a higher temperature requires a higher pressure to achieve the same loading *n*. Hence, $\ln p_2 > \ln p_1$ and $\ln p_2 - \ln p_1 > 0$ and $1/T_2 < 1/T_1$ or $(1/T_2 - 1/T_1) < 0$.

Adsorption is an exothermic process, thus $\Delta H_{ads}(n) < 0$ kJ mol⁻¹ is obtained as required.

For any experimentally measured or interpolated loading *n* a heat of adsorption $\Delta H_{ads}(n)$ is obtained this way. This allows to plot $\Delta H_{ads}(n)$ as a function of loading n (Fig. 5).

By defining

$$\frac{\Delta H_{ads}(n)}{R} = m = \frac{\ln p_2 - \ln p_1}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right)} < 0$$
(S14)

one obtains

$$\Delta H_{ads} = R \cdot m < 0 \tag{S15}$$

Note,

in the literature the equation

$$Q_{st} = -R \cdot m' \tag{S16}$$

is usually given. This is derived from

$$Q_{st} = -R \cdot \ln\left(\frac{p_2}{p_1}\right) \left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right)$$
(S17)

with the misleading use of Qst (see below) and

$$m' = \ln\left(\frac{p_2}{p_1}\right) \left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right)$$
(S18)

This expression can be rewritten to

$$m' = \ln\left(\frac{p_2}{p_1}\right)\left(\frac{T_1 \cdot T_2}{T_2 - T_1}\right) = \frac{\ln p_2 - \ln p_1}{\left(\frac{T_2 - T_1}{T_1 \cdot T_2}\right)} = \frac{\ln p_2 - \ln p_1}{\left(\frac{1}{T_1} - \frac{1}{T_2}\right)} = \frac{\ln p_2 - \ln p_1}{-\left(\frac{1}{T_2} - \frac{1}{T_1}\right)} = -m$$
(S19)

and illustrates that m' > 0, while m < 0.

S2. Virial equation

The virial fit is based on the exponential virial equation:^{1,2,3}

$$p = n \cdot \exp\left(\sum_{i=0}^{m} C_i n^i\right) \tag{S20}$$

with *p* as the pressure and *n* the amount adsorbed. C_0 is a constant for the adsorbate-adsorbent interaction, C_1 , C_2 etc. are constants for the double, triple etc. interactions in the adsorbent field. The constants C_i depend on temperature, according to²

$$\frac{dC_i}{dT}RT^2 = Q_i \tag{S21}$$

The heat of adsorption Q_{st} (not to be mistaken as the *enthalpy of* adsorption, ΔH_{ads}) is given as¹

$$Q_{st} = \left(\sum_{i=0}^{m} \frac{dC_i}{dT} RT^2 n^i\right) = \left(\sum_{i=0}^{m} Q_i n^i\right)$$
(S22)

with Q_0 as the heat of adsorption at n = 0, that is Q_{st}^0 . The other Q_i ($i \neq 0$) are constants having the units $[Q_i] = [(k)J \text{ mol}^{-(i+1)}]^{.1}$

If Q_i is taken as independent from temperature (for small ΔT intervals), the integration of Eq. (S21) gives

$$C_i = -\frac{Q_i}{RT} + const = -\frac{Q_i}{RT} + b_i$$
(S23)

Substituting Eq. (S23) into Eq. (S20) leads to

$$p = n \cdot \exp\left(\sum_{i=0}^{m} \left(-\frac{Q_i}{RT} + b_i\right) n^i\right) = n \cdot \exp\left(-\sum_{i=0}^{m} \frac{Q_i}{RT} n^i\right) \exp\left(\sum_{i=0}^{m} b_i n^i\right)$$
(S24)

or in the logarithmic form

$$\ln p = \ln n - \frac{1}{T} \sum_{i=0}^{m} \frac{Q_i}{R} n^i + \sum_{i=0}^{m} b_i n^i$$
(S25)

The substitution

$$a_i = -\frac{Q_i}{R} \text{ or } Q_i = -R \cdot a_i \tag{S26}$$

then gives the virial equation in a commonly published form:

$$\ln p = \ln n + \frac{1}{T} \sum_{i=0}^{m} a_i n^i + \sum_{i=0}^{m} b_i n^i$$
 (S27)

In equation (S27), p is the pressure in kPa, n is the of total amount adsorbed in mmol/g, T is the temperature in K (e.g. 273 K, 293 K), a_i and b_j are the virial coefficients and m represents the number of coefficients required to adequately fit the isotherms.

We note that in order to derive at dimensionless values in the argument of the logarithm (In) the pressure and amount adsorbed must be divided by their units as in Eq. (S28).

$$\ln \frac{p}{kPa} = \ln \frac{n}{mmol \cdot g^{-1}} + \frac{1}{T} \sum_{i=0}^{m} a_i n^i + \sum_{i=0}^{m} b_i n^i$$
(S28)

With the units of $[Q_i] = [(k)J \mod^{-(i+1)}]$ the units of $[a_i]$ are $[K \cdot \mod^{-i}]$.

From Eq. (S22) and (S26), the uptake-dependent heat of adsorption Q_{st} (as a function of uptake *n*) is derived as

$$Q_{st}(n) = -R \cdot \sum_{i=0}^{m} a_i n^i$$
(S29)

and for the approximation of the heat of adsorption at zero (rather very low) coverage, Qst⁰

$$Q_{st}^0(n) = -R \cdot a_0 \tag{S30}$$

From the negative sign of the most important virial coefficient a_0 (with the unit K(elvin)) this heat of adsorption $Q_{st}(n)$ and Q_{st}^0 will be positive quantities.

Note that the isosteric heat of adsorption $Q_{st}(n)$ is a differential heat and a positive quantity.⁴

Potential problem with the use of Q_{st}

A problem arises if the positive $Q_{st}(n)$ from the virial fit is taken as the same Q_{st} from the Clausius-Clapeyron equation (see above Eq. (S11, S16, S17) from which Q_{st} will be negative), since both quantities will have the opposite sign (besides a somewhat different value).

Therefore, the Clausius-Clapeyron equation should be used and given with the correct (isosteric) enthalpy of adsorption ΔH_{ads} and not with Q_{st} .

Presumably, the misleading (if not wrong) use of Q_{st} in the Clausius-Clapeyron equation was introduced because the magnitude 'heat of adsorption, Q_{st} ' was used for the virial equations.

The quantity *isosteric enthalpy of adsorption* ΔH_{ads} is more meaningful than the simple *heat*, Q. Both magnitudes are equal with opposite sign⁴

$$\Delta H_{ads} = -Q_{st} \tag{S31}$$

which then correctly relates the negative, exothermic (isosteric) enthalpy of adsorption ΔH_{ads} from the Clausius-Clapeyron equation to the positive (isosteric) heat of adsorption Q_{st} from the virial fit.

S3. Freundlich-Langmuir fit of *n* vs. *p* isotherms

A brief illustration how to set up the Freundlich-Langmuir fit with the program Origin is given in the file "HoA detailed description_origin.pdf".

S3.1 CO₂ adsorption isotherm data on MIL-160 at 273 K and 293 K (see Origin file Or1):

S3.2 Fit information for the isotherm at 273 K (see Origin file Or1):

Nonlinear Curve Fit (NewFunction1 (User)) (26.02.2019 13:16:21) Notes

110100		
Description	Nonlinear Curve Fit	Γ
User Name	Nuhnen AC1	
Operation Time	26.02.2019 13:16:21	
Iteration Algorithm	Levenberg Marquardt	
Model	NewFunction1 (User)	
Number of Parameters		3
Number of Derived Parameters		0
Number of Datasets		1
Equation	(a*b*p^c)/(1+b*p^c)	
Report Status	New Analysis Report	
Special Input Handling		

Input Data

		Dep/Indep	Data	Range	Weight Type
	в	p Indep	[Book1]Sheet1!A"2	[1*:39*]	No Weighting
		n Dep	[Book1]Sheet1!B	[1*:39*]	No Weighting

Parameters

		Value	Standard Error
	а	5.93098	0.03765
В	b	0.05028	8.52726E-4
	С	1.05613	0.01032

Reduced Chi-sqr = 7.31092873215E-4 COD(R^2) = 0.99982145950209 Iterations Performed = 16 Total Iterations in Session = 16 Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	В
Number of Points	39
Degrees of Freedom	36
Reduced Chi-Sqr	7.31093E-4
Residual Sum of Squares	0.02632
Adj. R-Square	0.99981
Fit Status	Succeeded(100)

Fit Status Code : 100 : Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Summary

	а		b		С		Statistics	
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Reduced Chi-Sqr	Adj. R-Square
В	5.93098	0.03765	0.05028	8.52726E-4	1.05613	0.01032	7.31093E-4	0.99981

ANOVA

		DF	Sum of Squares	Mean Square	F Value	Prob>F
	Regression	3	359.86417	119.95472	164075.90117	0
5	Residual	36	0.02632	7.31093E-4		
В	Uncorrected Total	39	359.89049			
	Corrected Total	38	147.41386			

Fitted Curves Plot

Residual vs. Independent Plot

S3.3 Fit information for the isotherm at 293 K (see Origin file Or1):

Nonlinear Curve Fit (NewFunction1 (User)) (26.02.2019 13:16:57)

Notes

Description	Nonlinear Curve Fit	
User Name	Nuhnen AC1	
Operation Time	26.02.2019 13:16:57	
Iteration Algorithm	Levenberg Marquardt	
Model	NewFunction1 (User)	
Number of Parameters		3
Number of Derived Parameters		0
Number of Datasets		1
Equation	(a*b*p^c)/(1+b*p^c)	
Report Status	New Analysis Report	
Special Input Handling		

Input Data

		Dep/Indep	Data	Range	Weight Type
D	р	Indep	[Book1]Sheet1!C"2	[1*:39*]	No Weighting
	n	Dep	[Book1]Sheet1!D	[1*:39*]	No Weighting

Parameters

		Value	Standard Error
D	а	5.89269	0.01733
	b	0.01682	8.43552E-5
	С	1.09519	0.00272

Reduced Chi-sqr = 2.58490693727E-5 COD(R²) = 0.99999008962444 Iterations Performed = 18 Total Iterations in Session = 18

Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Statistics

	D
Number of Points	39
Degrees of Freedom	36
Reduced Chi-Sqr	2.58491E-5
Residual Sum of Squares	9.30566E-4
Adj. R-Square	0.99999
Fit Status	Succeeded(100)

Fit Status Code :

100 : Fit converged. Chi-Sqr tolerance value of 1E-9 was reached.

Summary

	а		b		с		Statistics	
	Value	Standard Error	Value	Standard Error	Value	Standard Error	Reduced Chi-Sqr	Adj. R-Square
D	5.89269	0.01733	0.01682	8.43552E-5	1.09519	0.00272	2.58491E-5	0.99999

ANOVA

	DF	Sum of Squares	Mean Square	F Value	Prob>F
Regression	3	191.1773	63.72577	2465302.16	0
Residual	36	9.30566E-4	2.58491E-5		
Uncorrected Total	39	191.17823			
Corrected Total	38	93.89821			

Fitted Curves Plot

Residual vs. Independent Plot

S3.4 Fitted CO_2 adsorption isotherms on MIL-160 at 273 K and 293 K with fit data (see Origin file Or1):

Paste	e your is	sotherm					Paste y	our fitting				
data here or in		Adjust the temperatures			parameters from Origin			Data for the Origin				
Origir	า.		here				here.			plo	t of ΔH	ads VS <i>N</i> .
	1						L				/	
					Freundlich La	ngmuir fit fron	n origin 273K	Freundlich Lan	<mark>gmuir fit fro</mark>	om origin	293К	
						a h	0.0503	a h	5.8	39 12		
						c 🚽	1.0561	c	1.1	10		7
CO2 adsorpt	tion	CO2 adsorpt	ion			273.1500	293.1500					
273.15 K	mmol/a	293.15 K	mmol/g	R [J/mol/K]	n mmol/g	p kPa	p kPa	Hads [J/mol]	– Hads [KJ/	'mol]	mmol/g	- Hads [KJ/mol]
0 0006	0.0108	0.0005	0 0011	0.514	0.01	0.0402	0.1235	-36513	36 9	51	0.01	36.51
0.0011	0.0256	0.0011	0.0061		0.02	0.1142	0.3374	-36056	36.0	06	0.03	36.06
0.0016	0.0389	0.0015	0.0110		0.04	0.1502	0.4394	-35731	35.7	73	0.04	35.73
0.0021	0.0527	0.0020	0.0163		0.05	0.1858	0.5396	-35478	35.4	18	0.05	35.48
0.0027	0.0670	0.0025	0.0215		0.06	0.2212	0.6383	-35272	35.2	27	0.06	35.27
0.0032	0.0812	0.0030	0.0269		0.07	0.2564	0.7359	-35097	35.1		0.07	35.10
0.0041	0.1088	0.0041	0.0381		0.08	0.2914	0.8326	-34945	34.9	21	0.08	34.95
0.0031	0.1301	0.0031	0.0433		0.03	0.3203	1 0240	-34691	34.0	59	0.03	34.69
0.0102	0.2779	0.0101	0.1049		0.12	0.4306	1.2133	-34483	34.4	18	0.12	34.48
0.0155	0.4227	0.0155	0.1653		0.14	0.4999	1.4012	-34307	34.3	31	0.14	34.31
0.0218	0.5909	0.0204	0.2130		0.16	0.5691	1.5879	-34154	34.1	15	0.16	34.15
0.0270	0.7216	0.0255	0.2669		0.18	0.6384	1.7738	-34018	34.0)2	0.18	34.02
0.0316	0.8401	0.0327	0.3441		0.2	0.7077	1.9592	-33896	33.9	90	0.2	33.90
0.0366	0.9599	0.0380	0.4011		0.22	0.7771	2.1442	-33786	33.7	79	0.22	33.79
0.0417	1.0810	0.0433	0.4561		0.24	0.8466	2.3290	-33685	33.6	00 10	0.24	33.08
0.0502	1.4872	0.0526	0.5520		0.26	0.9863	2.5138	-33592	33.5	55 51	0.26	33.51
0.0704	1.6916	0.0728	0.7569		0.20	1.0563	2.8833	-33424	33.4	12	0.20	33.42
0.0808	1.8815	0.0828	0.8559		0.32	1.1267	3.0684	-33349	33.3	85	0.32	33.35
0.0912	2.0563	0.0932	0.9540		0.34	1.1973	3.2537	-33277	33.2	28	0.34	33.28
0.1018	2.2211	0.1035	1.0449		0.36	1.2682	3.4393	-33210	33.2	21	0.36	33.21
0.1545	2.8672	0.1523	1.4638		0.38	1.3394	3.6253	-33146	33.1	15	0.38	33.15
0.2032	3.2804	0.2037	1.8471		0.4	1.4108	3.8118	-33085	33.0	08	0.4	33.08
0.2555	3.6071	0.2555	2.1801		0.42	1.4826	3.9988	-33027	33.0)3	0.42	33.03
0.3026	3.8366	0.3073	2.46/5		0.44	1.554/	4.1862	-329/1	32.9	37	0.44	32.97
0.3338	4.0304	0.3332	2.0874		0.40	1.0272	4.5745	-32918	32.5	87	0.40	32.92
0.4568	4.3476	0.4555	3.0909		0.40	1.7731	4.7523	-32817	32.8	32	0.5	32.82
0.5076	4.4702	0.5067	3.2619		0.52	1.8466	4.9423	-32770	32.7	77	0.52	32.77
0.5588	4.5775	0.5578	3.4110		0.54	1.9205	5.1330	-32724	32.7	/2	0.54	32.72
0.6096	4.6755	0.6088	3.5449		0.56	1.9948	5.3245	-32680	32.6	58	0.56	32.68
0.6601	4.7676	0.6598	3.6677		0.58	2.0695	5.5168	-32637	32.6	54	0.58	32.64
0.7113	4.8528	0.7108	3.7752		0.6	2.1446	5.7099	-32595	32.6	50	0.6	32.60
0.7620	4.9226	0.7614	3.8/61		0.62	2.2201	5.9038	-32555	32.5	56 : 2	0.62	32.56
0.8131	5.0608	0.8127	4 0615		0.64	2.2301	6 2942	-32310	32.5	18	0.64	32.32
0.9145	5.1223	0.9139	4.1463		0.68	2.4493	6.4908	-32441	32.4	14	0.68	32.44
0.9648	5.1817	0.9644	4.2253		0.7	2.5265	6.6883	-32405	32.4	11	0.7	32.41
					0.72	2.6043	6.8868	-32370	32.3	37	0.72	32.37
					0.74	2.6825	7.0863	-32336	32.3	34	0.74	32.34
					0.76	2.7611	7.2868	-32302	32.3	30	0.76	32.30
					0.78	2.8403	7.4884	-32270	32.2	27	0.78	32.27
					0.8	3 0001	7.6910	-32238	32.2	. 4)1	0.8	32.24
					0.84	3.0807	8.0994	-32200	32.2	18	0.82	32.18
					0.86	3.1619	8.3054	-32146	32.1	15	0.86	32.15
					0.88	3.2436	8.5124	-32116	32.1	12	0.88	32.12
					3.78	28.9354	70.9031	-29833	29.8	33	3.78	29.83
					3.8	29.3387	71.8670	-29822	29.8	32	3.8	29.82
					3.82	29.7494	72.8483	-29811	29.8	81	3.82	29.81
					3.84	30.1675	73.8474	-29799	29.8	30	3.84	29.80
					3.86	30.5934	74.8648	-29788	29.7	79 70	3.86	29.79
					3.88	31.02/3	75.9011	-29/77	29.7	0 77	3.88	29.78
					3.9	31 9198	78.0325	-29/00	29.7	75	3.9	29.75
					3.94	32.3790	79.1288	-29744	29.7	74	3.94	29.74
					3.96	32.8471	80.2463	-29733	29.7	/3	3.96	29.73
					3.98	33.3244	81.3856	-29722	29.7	2	3.98	29.72
					4	33.8112	82.5474	-29711	29.7	/1	4	29.71
					4.02	34.3078	83.7325	-29700	29.7	70	4.02	29.70
					4.04	34.8145	84.9415	-29689	29.6	59	4.04	29.69
					4.06	35.3316	86.1751	-29679	29.6	8	4.06	29.68
					4.08	35.8594	87.4343	-29668	29.6	56	4.08	29.67
					4.1 4.12	36.3983	90 0325	-29657	29.6	55	4.1	29.00
					4.14	37.5109	91.3732	-29636	29.6	54	4.14	29.64
					4.16	38.0852	92.7430	-29625	29.6	53	4.16	29.63
					4.18	38.6722	94.1427	-29615	29.6	51	4.18	29.61
					4.2	39.2723	95.5735	-29604	29.6	50	4.2	29.60

S3.5 Excel data sheet Ex1 for continuum of $n | p_1$ and $n | p_2$ data pairs ($n | p_1 | p_2$ data triples):

S3.6 Chosen "linear region" of $n \mid \ln p$ data pairs of CO₂ adsorption isotherm data on MIL-160 at 273 K and 293 K (see Origin file Or1):

S3.7 Linear fit information for the isotherm at 273 K (see Origin file Or1):

Linear Fit (10.03.2020 12:22:47)

Notes

Perform Linear Fitting
Nuhnen AC1
10.03.2020 12:22:47
$y = a + b^*x$
Report generated from Data Cha nged
No Weighting
No

Input Data

Input X Data Source	Input Y Data Source	Range
[Book1]Sheet1!I"273 K"	[Book1]Sheet1!J	[1*:29*]

Parameters

		Value	Standard Error	t-Value	Prob> t
	Intercept	0.49083	0.04285	11.45425	7.14453E-12
J	Slope	0.77883	0.01217	64.01305	4.99276E-31

Slope is significantly different from zero (See ANOVA Table). Standard Error was scaled with square root of reduced Chi-Sqr. Some input data points are missing.

Statistics

	L
Number of Points	29
Degrees of Freedom	27
Residual Sum of Squares	0.3208
Pearson's r	0.99672
R-Square (COD)	0.99345
Adj. R-Square	0.99321

Summary

	lr	ntercept		Slope	Statistics
	Value	Standard Error	Value	Standard Error	Adj. R-Square
J	0.49083	0.04285	0.77883	0.01217	0.99321

ANOVA

		DF	Sum of Squares	Mean Square	F Value	Prob>F
	Model	1	48.68715	48.68715	4097.67067	5.00289E-31
J	Error	27	0.3208	0.01188		
	Total	28	49.00796			

At the 0.05 level, the slope is significantly different from zero.

Fitted Curves Plot

Residual Plots

S3.8 Linear fit information for the isotherm at 293 K (see Origin file Or1):

Linear Fit (10.03.2020 12:22:46)

Notes

Description	Perform Linear Fitting
User Name	Nuhnen AC1
Operation Time	10.03.2020 12:22:46
Equation	y = a + b*x
Report Status	Report generated from Data Cha nged
Weight	No Weighting
Special Input Handling	
Data Filter	No

Input Data

Input X Data Source	Input Y Data Source	Range
[Book1]Sheet1!K"293 K"	[Book1]Sheet1!L	[1*:25*]

Parameters

		Value	Standard Error	t-Value	Prob> t
	Intercept	1.37289	0.05644	24.32267	6.53187E-18
L	Slope	0.7785	0.02043	38.11202	2.73037E-22

Slope is significantly different from zero (See ANOVA Table). Standard Error was scaled with square root of reduced Chi-Sqr. Some input data points are missing.

Statistics

	L
Number of Points	25
Degrees of Freedom	23
Residual Sum of Squares	0.43833
Pearson's r	0.99218
R-Square (COD)	0.98441
Adj. R-Square	0.98373

Summary

	In	itercept		Slope	Statistics
	Value	Standard Error	Value	Standard Error	Adj. R-Square
L	1.37289	0.05644	0.7785	0.02043	0.98373

ANOVA

		DF	Sum of Squares	Mean Square	F Value	Prob>F
	Model	1	27.68213	27.68213	1452.52645	2.73195E-22
L	Error	23	0.43833	0.01906		
	Total	24	28.12046			

At the 0.05 level, the slope is significantly different from zero.

Fitted Curves Plot

Residual Plots

S3.9 Linear fitted CO_2 adsorption isotherms on MIL-160 at 273 K and 293 K with fit data (see Origin file Or1):

S3.10 Fit of $\ln p \operatorname{vs1}/T_1$ and $1/T_2$ at equal loading *n* (see Origin file Or1):

			Γ	Paste	Paste your fitting para-											
Paste vour isotherm				, actor									Data for the			
r dote your lootherin				meters	s from the inp	$ \ln p $	Inp vs 1/1 plot for a					i uie				
data hara ar in Origin							11 .									
uala	a nere or i	n Ongin		isothe	rms here.		give	n <i>n</i> .			ΔH_{ads} vs <i>n</i> plot.					
	1															
					1			1								
		\rightarrow			linear fit 2/3K	0.40093		hnear fit 293K	1 27200		- /					
					m	0.77883		m	0.7785			/				
		-										/				
												/				
CO2			CO2			273.15	293.15			/						
273.15			293.15		n mmol/g	InP kPa	InP kPa				/					
kPa	mmol/g		kPa	mmol/g	0.4	0.802362	1.68429				/					
0.00059155	0.010754464		0.00052636	0.00111607	0.6	0.958128	1.83999			/						
0.001148/	0.025580357		0.00105044	0.00612054	0.8	1.113894	1.99569		/	/						
0.00103420	0.0536000/1		0.0015244	0.01099554	15	1.20900	2.15139				/					
0.00213333	0.052000714		0.00204809	0.01030337	1.3	2 0/8/9	2.34004				/					
0.00316253	0.081209821		0.00304987	0.026875	2.5	2.437905	3.31914				/					
0.00414698	0.108808036		0.00407805	0.03811607	3	2.82732	3.70839									
0.00512316	0.136120536		0.00510077	0.04925446	3.5	3.216735	4.09764			/						
0.00768921	0.207915179		0.00761282	0.07704018	4	3.60615	4.48689									
0.01020887	0.277915179		0.01013554	0.10485714				X								
0.01550908	0.422696429		0.01554655	0.16529018												
0.02184068	0.590888393		0.02042586	0.213				/		/						
0.02695891	0.721607143		0.0254761	0.26687946	n = 0.4		n = 0.6		n = 0.8	/	n = 1		n = 1.5			
0.03164051	0.840098214		0.03269175	0.34413839	1/T [K]	In p kPa	1/T [K]	In p kPa	1/T [K]	In p kPa	1/T [K]	In p kPa	1/T [K]	In p kPa		
0.03662809	0.959866071		0.03803623	0.40108929	0.003660992	0.802362	0.003660992	0.958128	0.003660992	1.113894	0.00366099	1.26966	0.00366099	1.659075		
0.04174218	1.080955357		0.04329032	0.45606696	0.003411223	1.68429	0.003411223	1.83999	0.003411223	1.99569	0.00341122	2.15139	0.00341122	2.54064		
0.0501944	1.2/3908/5		0.05250233	0.55195536	2=2		225		2=2		n = 2 F		n = 4			
0.035585	1.482203337		0.00200828	0.03072708	1/T [K]	In n kPa	1/T [K]	In n kPa	1/T [K]	ln n kPa	1/T [K]	ln n kPa	1/T [K]	ln n kPa		
0.08079753	1.881522321		0.08280349	0.85592411	0.003660992	2.04849	0.003660992	2.437905	0.003660992	2.82732	0.00366099	3.216735	0.00366099	3.60615		
0.09119825	2.056294643		0.09319074	0.95401786	0.003411223	2,92989	0.003411223	3.31914	0.003411223	3,70839	0.00341122	4.09764	0.00341122	4,48689		
0.10175815	2.221111607		0.10347654	1.04494643												
0.15447993	2.867165179		0.15230985	1.46382589												
0.20320579	3.280441964		0.20367029	1.84705804	Hads via In p vs 1	T plot										
0.25551028	3.607058036		0.25554588	2.18006696					/							
0.30256575	3.836625		0.30729654	2.46749554	R [J/mol*K]	8.314	Hads = m * R		/							
0.35379179	4.036419643		0.35315411	2.68737946												
0.4054014	4.20375		0.40422164	2.9019375	n mmol/g	Slope m of In p vs 1/T	– Hads [J/mol]	– Hads [kJ/mol]								
0.45682677	4.34/589286		0.45554768	3.09086161	0.4	-3530.9/1/2	29356.49888	29.35649888								
0.50/59885	4.4/0232143		0.50666253	3.26186161	0.6	-3530./0/4/	29354.30191	29.35430191								
0.558//1/	4.57740875		0.55775499	3 54485268	0.8	-3530.44323	29352.10501	29.35210501								
0.66013655	4.767584821		0.65984471	3.66765179	15	-3529,51837	29345.50804	29.34441573								
0.71128154	4.852839286		0.71076091	3.77522321	2.5	-3528,85776	29338,97347	29.33897347								
0.76204282	4.922580357		0.76141234	3.87610268	2.5	-3528,19715	29333,43111	29.33343111								
0.81306475	4.99103125		0.81272878	3.97332143	3	-3527.53654	29327.93879	29.32793879								
0.86363885	5.060830357		0.86322795	4.06146875	3.5	-3526.87593	29322.44648	29.32244648								
0.91453546	5.122290179		0.91385325	4.14632589	4	-3526.21533	29316.95425	29.31695425								
0.96483025	5.181696429		0.96443642	4.22528125												

S3.11 $\Delta H_{ads}(n)$ from $\ln p_1 | 1/T_1$ and $\ln p_2 | 1/T_2$ at equal loading *n* (see Excel sheet Ex2):

S3.12 Virial fit for SO₂ adsorption isotherms on NH₂-MIL-125(Ti) at 273 K and 293 K in an In*p* vs *n* plot (see Origin file Or2):

A brief illustration how to set up the virial fit with the program Origin is given in the file "HoA detailed description_origin.pdf".

S3.13 $\Delta H_{ads}(n)$ from virial fit for SO₂ adsorption isotherms on NH₂-MIL-125(Ti) at 273 K and 293 K (Excel sheet Ex3):

R [J/mol/K]	parameter fr	gin	
8.314	a0	-6511.60683	
	a1	831.25491	
	a2	-402.37321	
	a3	177.12422	
	a4	-38.63336	
	a5	4.33821	
	a6	-0.23772	
	a7	0.00499	
	n		
	mmol/g	– Hads[J/mol]	– Hads[kJ/mol]
	0.16	53111.54606	53.11154606
	0.18	52993.64047	52.99364047
	0.2	52877.82337	52.87782337
	0.22	52764.03517	52.76403517
	0.24	52652.21739	52.65221739
	0.26	52542.31263	52.54231263
	0.28	52434.26458	52.43426458
	0.3	52328.01796	52.32801796
	0.32	52223.51858	52.22351858
	0.34	52120.71325	52.12071325
	0.36	52019.54981	52.01954981
	0.38	51919.97713	51.91997713
	0.4	51821.94506	51.82194506
	0.42	51725.40444	51.72540444
	0.44	51630.3071	51.6303071
	0.46	51536.60579	51.53660579
	0.48	51444.25427	51.44425427
	0.5	51353.20719	51.35320719
	0.52	51263.42015	51.26342015
	0.54	51174.84965	51.17484965
	9.98	13773.86189	13.77386189
	10	13674.52408	13.67452408
	10.02	13575.62236	13.57562236
	10.04	13477.17189	13.47717189
	10.06	13379.18799	13.37918799
	10.08	13281.68606	13.28168606
	10.1	13184.68162	13.18468162
	10.12	13088.1903	13.0881903
	10.14	12992.22784	12.99222784
	10.16	12896.81009	12.89681009

S3.14 Dual-site Freundlich-Langmuir fitted H_2 adsorption isotherms on HHU-1 at 77 K and 87 K with fit data (see Origin file Or4):

Paste your fitting																	
Adjust the temperatures				parameters from Origin here.					D	ata for	the O	rigin					
here.			р						lot of Δ	Hads V	s <i>n</i> .						
		,							IL /	1				J			
G	н	1	1	к	L	м	N	0	P/	6	Q R	S	т		U	v	w
Freundlich Lan	gmuir fit from o	origin 77 K	a	4.20974 F	reundlich Langmuir fi	it from origin 87 K	а	1.12041	//								
			b	0.0369			b	0.15144									
			c	0.71754			c	0.88883									
			a1	1.35032			a1	3.6671									
			b1	0.42861			b1	0.01378									
			c1	0.82586			c1	0.843									
		77.40	07.15								77.45		a face all als forms and		07.44		
R [I/mol/K]	mmol/g	P kPa	87.15 P kPa		lads [1/mol]	- Hads [KI/mol]		ol/a	- Hads (KI/mo	11	//.15	P kPa	P kPa		87.13 mmol/a	P kPa	
K (J/IIIOI/K)	0.01	0.00458	0.0297		-10450 2515	10 4502515		0.01	10 4502515	21	0.00306456	0.00102	FNFd	0.00458	0.0005230	1 0.00102	0.0297
	0.02	0.011	0.0658		-9999.005642	9,999005642		0.02	9.999005642		0.00311168	0.00104		0.011	0.0005320	0.00104	0.0658
	0.03	0.0185	0.105		-9705.334249	9,705334249		0.03	9.705334249		0.00315862	0.00106		0.0185	0.0005409	5 0.00106	0.105
	0.04	0.0267	0.146		-9497.125233	9.497125233		0.04	9.497125233		0.00320536	0.00108		0.0267	0.00054988	3 0.00108	0.146
8.31	L4 0.05	0.0356	0.19		-9361.485517	9.361485517		0.05	9.361485517		0.00325192	0.0011		0.0356	0.00055879	0.0011	0.19
	0.06	0.045	0.235		-9239.872345	9.239872345		0.06	9.239872345		0.00329831	0.00112		0.045	0.00056767	7 0.00112	0.235
	0.07	0.0549	0.283		-9167.260922	9.167260922		0.07	9.167260922		0.00334452	0.00114		0.0549	0.00057654	1 0.00114	0.283
	0.08	0.0653	0.331		-9073.308286	9.073308286		0.08	9.073308286		0.00339056	0.00116		0.0653	0.00058539	0.00116	0.331
	0.09	0.0761	0.381		-9004.130513	9.004130513		0.09	9.004130513		0.00343643	0.00118		0.0761	0.00059422	0.00118	0.381
	0.1	0.0874	0.433		-8945.386868	8.945386868		0.1	8.945386868		0.00348213	0.0012		0.0874	0.00060303	3 0.0012	0.433
	0.12	0.111	0.539		-8833.267419	8.83326/419		0.12	8.83326/419		0.00352768	0.00122		0.111	0.0006118	0.00122	0.539
	0.14	0.150	0.051		-8/53.159009	8.753159009		0.14	8.753159009		0.00357307	0.00124		0.150	0.0006208	0.00124	0.051
	0.10	0.103	0.708		-8609.027298	8 609027298		0.10	8 609027298		0.00366338	0.00120		0.103	0.0000233	0.00120	0.708
	0.2	0.22	1.01		-8519.62647	8.51962647		0.10	8.51962647		0.00370831	0.0013		0.22	0.0006468	0.00110	1.01
	0.22	0.251	1.15		-8508.369397	8,508369397		0.22	8.508369397		0.0037531	0.00132		0.25	0.0006555	0.00132	1.15
	0.24	0.284	1.28		-8416.563592	8.416563592		0.24	8.416563592		0.00379774	0.00134		0.28	0.0006642	0.00134	1.28
	0.26	0.318	1.42		-8364.686249	8.364686249		0.26	8.364686249		0.00384225	0.00136		0.32	0.0006728	3 0.00136	1.42
	0.28	0.353	1.57		-8342.337764	8.342337764		0.28	8.342337764		0.00388661	0.00138		0.35	0.00068154	1 0.00138	1.57
	0.3	0.39	1.72		-8295.213839	8.295213839		0.3	8.295213839		0.00393084	0.0014		0.39	0.00069018	3 0.0014	1.72
	0.34	0.468	2.05		-8257.167863	8.257167863		0.34	8.257167863		0.00397494	0.00142		0.47	0.0006988	0.00142	2.05
	0.38	0.552	2.39		-8192.177303	8.192177303		0.38	8.192177303		0.0040189	0.00144		0.55	0.00070742	2 0.00144	2.39
	0.42	0.643	2.76		-8143.//1288	8.143//1288		0.42	8.143//1288		0.00406274	0.00146		0.64	0.0007160	0.00146	2.76
	0.40	0.74	3.15		9046 060456	8.057183804		0.40	8.037183804		0.00410043	0.00148		0.74	0.0007221	7 0.00142	3.13
	0.55	0.844	4.12		-7000 132600	7 000132600		0.5	7 999132699		0.00413003	0.00152		0.84	0.0007331	0.00153	4.12
	0.6	1.13	4.73		-8003.273607	8.003273607		0.6	8.003273607		0.00423684	0.00154		1.13	0.00075026	5 0.00154	4.73
	0.65	1.30	5.38		-7939.639838	7.939639838		0.65	7.939639838		0.00428006	0.00156		1.30	0.00075879	0.00156	5.38
	0.7	1.48	6.08		-7898.488897	7.898488897		0.7	7.898488897		0.00432316	0.00158		1.48	0.000767	3 0.00158	6.08
	0.75	1.68	6.84		-7848.353853	7.848353853		0.75	7.848353853		0.00436615	0.0016		1.68	0.0007758	3 0.0016	6.84
	0.8	1.89	7.65		-7815.567718	7.815567718		0.8	7.815567718		0.00440903	0.00162		1.89	0.00078429	0.00162	7.65
	0.85	2.12	8.53		-7782.276097	7.782276097		0.85	7.782276097		0.0044518	0.00164		2.12	0.00079276	5 0.00164	8.53
	0.9	2.37	9.47		-7743.513106	7.743513106		0.9	7.743513106		0.00449445	0.00166		2.37	0.00080122	0.00166	9.47
	0.95	2.63	10.48		-7728.117523	7.728117523		0.95	7.728117523		0.004537	0.00168		2.63	0.0008096	0.00168	10.48
	1	2.93	11.56		-7672.572892	7.672572892		1	7.672572892		0.00457944	0.0017		2.93	0.0008183	0.0017	11.56

S3.15 Excel data sheet Ex4 for continuum of $n \mid p_1$ and $n \mid p_2$ data pairs ($n \mid p_1 \mid p_2$ data triples):

The formula for the DSFL fit cannot easily be transformed into a p = f(n) form. Hence, about 12000 $n \mid p_1$ and $n \mid p_2$ data pairs were manually generated with the given n = f(p) formula (see Eq. 10 in the paper) using a variable increment of Δp as low as 0.00002. These $n \mid p_1$ and $n \mid p_2$ data pairs are listed in columns R | S and U | V in the Excel file Ex4. Then about 60 $n \mid p_1 \mid p_2$ data triples were manually generated by choosing an uptake, e.g., 0.01, for which the respective p_1 and p_2 pressures are then found through the Excel inherent function SLOOKUP(0.01;R11:S12160;2;TRUE) and SLOOKUP(0.01;U11:V12160;2;TRUE). This function operates such that it searches for the nearest uptake values to 0.01 and then gives the correlated pressure to this nearest uptake value. The found (correlated) pressure values are listed in column T and W, from which they are copied to column I and J in order to calculate the isosteric enthalpy of adsorption ΔH_{ads} vs n in columns O and P.

S4. MOF structures

S4.1 MIL-160:

MIL-160 (*Matériaux Institut Lavoisier*) is an AI-MOF, which was described by Cadiau *et al.* in 2015.⁵ They obtained the MOF by applying reflux conditions for aqueous solutions of 2,5-furandicarboxylic acid, sodium hydroxide and aluminum chloride. MIL-160 is constructed by cis-µ-OH-connected, vertex-sharing {AIO₆} octahedra, that form helical chains, which are then joined by the linker 2,5-furandicarboxylate (Fig. S1).

Fig. S1 Structural elements in MIL-160 with extended asymmetric unit, the fourfold helical chain of cis vertex-bridged {AIO₆}-polyhedra as the inorganic building unit, and the 3D framework structure of square-shaped one-dimensional channels. Graphics produced from cif-file for MIL-160 (CSD-Refcode PIBZOS).⁶

MIL-160 consists of chains of $\{AIO_6\}$ -polyhedra that are surrounded by linker molecules.⁵ This results in a chemical formula of $[AI(OH)(O_2C-C_4H_2O-CO_2) n H_2O]_m$ and microporous square-shaped channels of 5 Å edge length.^{5,7} The material exhibits a surface area of 1070 m² g⁻¹ and a pore volume of 0.40 cm³ g⁻¹ from AICI₃ and NaOH (theoretically: 1250 m² g⁻¹, 0.48 cm³ g⁻¹),⁵ respectively 1150 m² g⁻¹ and 0.46 cm³ g⁻¹, from AI(OH)(CH₃COO)₂,7 although very recent theoretical calculations suggested a surface area of 776 m² g⁻¹ and a pore volume of 0.45 cm³ g⁻¹.⁸

The hydrophilic character of the MOF is also due to the heteroatom in the furan moiety of the linker. This resulted in a highly hydrothermally stable material with promising water sorption characteristics. Cadiau *et al.* denoted MIL-160 as the most promising AI-MOF for heat pump applications.⁵

S4.2 NH₂-MIL-125(Ti):

NH₂-MIL-125(Ti) is based on $Ti_8O_8(OH)_4^{12+}$ SBUs and aminoterephthalic acid (H₂N-BDC), and is isostructural to unmodified MIL-125(Ti) (Fig. S2).⁹

Fig. S2 Structure of titanium terephthalate MIL-125 (isostructural to NH_2 -MIL-125(Ti)).⁹ The SBU is an eight-membered ring of edge- and vertex-sharing TiO₆ octahedra, which is connected to 12 neighboring SBUs in a body-centered cubic (bcc) packing arrangement. Structure drawn from the deposited cif-file under CCDC 751157 (MIL-125).⁹

Titanium aminoterephthalate, NH₂-MIL-125(Ti) is a hydrophilic MOF, showing a steep rise of the isotherm, and complete water loading at a relative pressure as low as $p/p_0 = 0.2$. Most notably, it is also much more hydrophilic than NH₂-UiO-66, although pore sizes are similar and the linker molecule is the same. The main reason for the increased hydrophilicity of NH₂-MIL-125(Ti) can be explained by the structure of the SBU: Compared to $Zr_6O_4(OH)_4^{12+}$ (679 g/mol), the Ti₈O₈(OH)₄¹²⁺ cluster (579 g/mol) has a lower formula weight and contains more hydrophilic M⁴⁺ and O²⁻ ions. From these results, NH₂-MIL-125(Ti) is of strong interest for further examination concerning water sorption for heat transformation.¹⁰

S4.3 HHU-1 (Zr-ADC):

The reaction of acetylenedicarboxylic acid (H₂ADC) with ZrOCl₂·8H₂O in DMF yielded the MOF **HHU- 1** of ideal formula $[Zr_6(\mu_3-O)_4(\mu_3-OH)_4(ADC)_6]$.¹¹·The structure of **HHU-1** was determined from powder diffraction data with *a* = 17.925(3) Å in space group *Fm*3*m* using the crystal structure of the terephthalate UiO-66 as a starting point. The UiO-type hexanuclear $[Zr_6O_4(OH)_4]^{12+}$ SBU with the attached ADC linkers and the face-centered cubic (fcc) packing diagram of the **fcu** network are shown in Figure S3. The contact diameters for the surrounding van der Waals radii of the octahedral and tetrahedral cages are about 9.6 Å and 5.8 Å diameter respectively, with a triangular window diameter 4.4 Å.¹¹

Fig. S3 (a) Secondary building unit of $\{Zr_6(O)_4(OH)_4\}$ with the 12 surrounding and connecting acetylenedicarboxylate linkers and the edge-sharing square-antiprismatic ZrO_8 coordination as polyhedra. (b) fcc packing diagram of the **fcu** framework in **HHU-1**. The refined guest atoms are not shown for clarity.¹¹

Water vapor adsorption for **HHU-1** displays a Type Ib isotherm with an early water uptake at $P/P_0 = 0.05$, which indicates a high hydrophilicity, probably due to the small micropores with the synergistic effects of the triple bond C=C of the ADC linker, and the μ_3 -OH and μ_3 -O groups on the $[Zr_6O_4(OH)_4]^{12+}$ SBU.¹¹

S5. CO₂ adsorption isotherms with Freundlich-Langmuir fit of MIL-160 at 273 K, 283 K and 293 K

Fig. S4 Freundlich-Langmuir fit for CO₂ isotherms of MIL-160 at 273 K, 283 K and 293.

Fig. S5 SO₂ adsorption isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K in a linear-scale *n* vs *p* plot. The amount adsorbed *n* starts at 0.05 mmol g^{-1} .

Fig. S6 SO₂ adsorption isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K in a linear-scale n vs p plot. The amount adsorbed n starts at 0.0002 mmol g⁻¹.

Fig. S7 SO₂ adsorption isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K in a linear *n*- vs logarithmic *p*-scale plot. The amount adsorbed *n* starts at 0.05 mmol g^{-1} .

Fig. S8 SO₂ adsorption isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K in a linear *n*- vs logarithmic *p*-scale plot. The amount adsorbed *n* starts at 0.0002 mmol g^{-1} .

S7. Virial analysis for SO₂ isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K with a larger number of a_i and b_i fit parameters

Fig. S9 Virial analysis for SO₂ isotherms of NH₂-MIL-125(Ti) at 273 K and 293 K with additional low uptake points, starting at n = 0.0002 mmol g⁻¹ and a larger number of a_i and b_i fit parameters.

S8. Enthalpy of adsorption for CO₂ on MIL-100(Cr)

Fig. S10 Enthalpy of adsorption for CO₂ on MIL-100(Cr) determined (left) by microcalorimetry¹² and (right) calculated from adsorption isotherms at 273, 298 and 323 K with a Freundlich-Langmuir fit and Clausius-Clapeyron approach.¹³ Left: Reproduced from ref. 12 with permission from the American Chemical Society, copyright 2008. Right: Reproduced from ref. 13 with permission from the American Chemical Society, copyright 2019.

References

- 1 A. G. Bezus, A. V. Kiselev, Z. Sedlacek and P. Q. Du, Trans. Faraday Soc., 1971, 67, 468–482.
- 2 N. N. Avgul, A. G. Bezus, E. S. Dobrova and A. V. Kiselev, *J. Coil. Interface Sci.*, 1973, **42**, 486–495.
- 3 M. Jaroniec and J. A. Jaroniec, *Carbon*, 1977, **15**, 107-111.
- 4 D. Nicholson and T. Stubos, Recent Advances in Gas Separation by Microporous Ceramic Membranes, in *Membrane Science and Technology*, Elsevier, 2000. J. Rouquerol, F. Rouquerol and K. S. W. Sing, Adsorption by powders and porous solids, Academic Press, San Diego, USA, 1999.
- 5 A. Cadiau, J. S. Lee, D. D. Borges, P. Fabry, T. Devic, M. T. Wharmby, C. Martineau, D. Foucher, F. Taulelle, C.-H. Jun, Y. K. Hwang, N. Stock, M. F. De Lange, F. Kapteijn, J. Gascon, G. Maurin, J.-S. Chang and C. Serre, *Adv. Mater.*, 2015, **27**, 4775–4780.
- 6 M. Wahiduzzaman, D. Lenzen, G. Maurin, N. Stock and M.T. Wharmby, *Eur. J. Inorg. Chem.*, 2018, 3626–3632.
- 7 A. Permyakova, O. Skrylnyk, E. Courbon, M. Affran, S. Wang, U-H. Lee, A. H. Valekar, F. Nouar, G. Mouchaham, T. Devic, G. De Weireld, J.-S. Chang, N. Steunou, M. Frère and C. Serre, *ChemSusChem.*, 2017, **10**, 1419–1426.
- 8 D. D. Borges, G. Maurin and D. S. Galvao, MRS Adv., 2017, 2, 519-524.
- 9 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey, *J. Am. Chem. Soc.*, 2009, **131**, 10857–10859.
- 10 F. Jeremias, V. Lozan, S. K. Henninger and C. Janiak, Dalton Trans., 2013, 42, 15967–15973.
- 11 T. J. Matemb Ma Ntep, H. Reinsch, B. Moll, E. Hastürk, S. Gökpinar, H. Breitzke, C. Schlüsener, L. Schmolke, G. Buntkowsky and C. Janiak, *Chem. Eur. J.*, 2018, **24**, 14048–14053.
- 12 P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung and G. Férey, *Langmuir*, 2008, **24**, 7245–7250.
- 13 J. Yang, H. Bai, F. Zhang, J. Liu, J. Winarta, Y. Wang and B. Mu, *J. Chem. Eng. Data*, 2019, **64**, 5814–5823.