Supporting Information

Near-IR Light-induced Photorelease of nitric oxide (NO) on Ruthenium Nitrosyl Complexes: Formation, reactivity aspects, and biological effects Bishnubasu Giri^{*a*}, Taruna Saini^{*b*}, Sadananda Kumbhakar^{*a*}, Kalai Selvan K^{*a*}, Arabinda Muley^{*a*}, Ashish Misra^{*b*}* and Somnath Maji^{**a*}

Figure captions:

Fig. S1. ¹H NMR spectra of [1](PF₆) in (CD₃)₂SO at room temperature.

Fig. S2. ¹H NMR spectra of [**2**](PF₆)₂ in (CD₃)₂SO at room temperature.

Fig. S3. ¹H NMR spectra of **[3]**(PF₆) in (CD₃)₂SO at room temperature.

Fig. S4. ¹H NMR spectra of [4](PF₆)₃ in (CD₃)₂SO at room temperature.

Fig. S5. ESI-MS(+) spectra of (a) $[1](PF_6)$ (b) $[2](PF_6)_2$ (c) $[3](PF_6)$ and (d) $[4](PF_6)_3$ in acetonitrile.

Fig. S6. Cyclic voltammograms of $[1](PF_6)$, $[2](PF_6)_2$ and $[3](PF_6)$ in CH₃CN/0.1M TBAP versus SCE, scan rate 100 mVs⁻¹.

Fig. S7. FTIR spectra of [1](PF₆) (Solid).

Fig. S8. FTIR spectra of [2](PF6)2 (Solid).

Fig. S9. FTIR spectra of [3](PF₆) (Solid).

Fig. S10. FTIR spectra of [4](PF₆)₃ (Solid).

Fig. S11. FTIR spectra of [4](PF₆)₂ (Solid).

Fig. S12. Bright-field images of VCaP cells treated with various compounds. (A) VCaP cells following addition of 3 μ M [1](PF₆), (B) 3 μ M [1](PF₆) treated VCaP cells before photo-irradiation, (C) 3 μ M [1](PF₆) treated VCaP cells following addition of 3 μ M [2](PF₆)₂, (E) 3 μ M [2](PF₆)₂ treated VCaP cells before photo-irradiation, (F) 3 μ M [2](PF₆)₂ treated VCaP cells following photo-irradiation for 15 min, (G) VCaP cells following addition of 3 μ M [3](PF₆), (H) 3 μ M [3](PF₆) treated VCaP cells before photo-irradiation, (I) 3 μ M [3](PF₆) treated VCaP cells before photo-irradiation, (I) 3 μ M [3](PF₆) treated VCaP cells following addition of 3 μ M [3](PF₆), (H) 3 μ M [3](PF₆) treated VCaP cells before photo-irradiation, (I) 3 μ M [3](PF₆) treated VCaP cells before photo-irradiation of 3 μ M [4](PF₆)₂, (K) 3 μ M [4](PF₆)₂ treated VCaP cells before photo-irradiation, (L) 3 μ M [4](PF₆)₂ treated VCaP cells following photo-irradiation for 10 min, (N) 3 μ M [4](PF₆)₂ treated VCaP cells following photo-irradiation for 10 min, (N) 3 μ M [4](PF₆)₂ treated VCaP cells following photo-irradiation for 10 min,

Complexes	δ, ppm (<i>J</i> , Hz)		
	Aromatic Protons	Aliphatic Protons	
[1](PF ₆)	10.17 (4.96) (d, 1H), 9.04 (s, 2H), 8.96 (8.16) (d, 1H), 8.92 (s, 1H), 8.74 (8.12) (d, 2H), 8.70 (8.08) (d, 1H), 8.40 (7.84, 7.8) (t, 1H), 8.30 (m, 3H), 8.09 (6.92, 6.16) (t, 1H), 7.94 (7.84, 7.76) (t, 2H), 7.86 (8.84, 6.76) (t, 1H), 7.81 (5.72) (d, 1H), 7.66 (m, 7H), 7.40 (7.12, 7.04) (t, 2H), 7.23 (7.08, 7.12) (t, 1H)	-	
[2](PF ₆) ₂	9.74 (5.24) (d, 1H), 9.18 (s, 2H), 9.02 (8.24) (d, 1H), 8.95 (s, 1H), 8.83 (8.04) (d, 2H), 8.78 (8.2) (d, 1H), 8.48 (7.88, 7.8) (t, 1H), 8.33 (m, 2H), 8.22 (820) (d, 1H), 8.06 (m, 4H), 7.80 (m, 4H), 7.67 (m, 3H), 7.59 (7.56, 7.88) (t, 1H), 7.50 (7.32, 7.08) (t, 2H), 7.38 (7.16, 7.24) (t, 1H)	2.44 (s, 3H)	
[3](PF ₆)	9.83 (4.92) (d, 1H), 9.07 (s, 2H), 8.97 (8.20) (d, 1H), 8.94 (s, 1H), 8.76 (m, 3H), 8.41 (7.88, 7.76) (t, 1H), 8.32 (6.8, 7.48) (t, 2H), 8.23 (8.32) (d, 1H), 8.10 (7.12, 6.04) (t, 1H), 8.00 (m, 3H), 7.90 (5.16) (d, 1H), 7.76 (4.92) (d, 2H), 7.66 (m, 5H), 7.44 (7.08, 6.08) (t, 2H), 7.36 (6.04, 6.08) (t, 1H)		
[4](PF ₆) ₃	9.84 (5.2) (d, 1H), 9.15 (s, 2H), 8.97 (8.20) (d, 1H), 8.77 (8.04, 7.8) (t, 2H), 8.71–8.68 (m, 2H), 8.60 (7.96) (d, 2H), 8.48–8.40 (m, 2H), 8.34–8.31 (m, 1H), 8.14–8.09 (m, 2H), 8.04 (8.96, 7.96) (t, 3H), 7.99–7.91 (m, 4H), 7.78 (4.68) (d, 2H), 7.47 (7.12, 6.08) (t, 2H), 7.36–7.31 (m, 1H)		

 Table S1. ¹H NMR spectral data in (CD₃)₂SO

Complexes	ν(PF6 ⁻)	
-	Stretching (cm ⁻¹)	Bending (cm ⁻¹)
[1](PF ₆)	828	548
[2](PF6)2	830	552
[3](PF ₆)	833	549
[4] (PF ₆) ₃	835	554
[4](PF ₆) ₂	835	552

Table S2. Vibrational frequencies of PF_6^- of corresponding complexes.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

Fig. S9

Fig. S10

Fig. S11

Fig. S12