Supporting Information

A new non-centrosymmetric Gd-based borate crystal Rb₇SrGd₂(B₅O10)₃: growth, structure, nonlinear optical and magnetic properties

Wang Liu,^{ac} Xiaomeng Liu,^{ac} Jun Shen,^a Yunfei Li,^{ac} Huimin Song,^{ac} Jingcheng Feng,^{ac} Zheshuai Lin,^a and Guochun Zhang^{*abc}

^{a.} Key Laboratory of Functional Crystals and Laser Technology of Chinese Academy of Sciences, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

E-mail: gczhang@mail.ipc.ac.cn

^{b.} State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

^{c.} Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³), and bond valence sums (BVS) for $Rb_7SrGd_2(B_5O_{10})_3$.

Atom	r	1V	7	U(ea)	BVS
		2222	2222	22.1(5)	1 17
KDI	6667	3333	3333	22.1(5)	1.17
Rb2	4801(11)	0	0	27.9(4)	0.97
Rb3	3333	1274(12)	1667	21.8(3)	1.12
Sr1	6667	3333	-1667	7.6(4)	2.15
Gd1	6667	3333	628(5)	13.0(2)	2.87
B1	959(10)	-1352(10)	1305(7)	18(3)	3.03
B2	6667	758(12)	3333	17(3)	3.06
В3	7765(11)	1913(11)	-534(7)	17(3)	3.09
01	7554(7)	2768(7)	-478(4)	21.5(17)	
O2	1014(7)	-634(7)	1931(4)	23.5(18)	
O3	4785(8)	-77(7)	2134(5)	36(3)	
O4	7690(7)	637(7)	3280(5)	22.7(16)	
05	6631(6)	1382(6)	2558(5)	19.6(15)	

 U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{ij} tensor.

Atoms	Length/Å	Atoms	Length/Å
Rb1–O5 ¹	2.867(8)	Rb3–O5 ¹⁷	2.849(8)
Rb1–O56	2.867(8)	Rb3–O4 ²	3.011(8)
Rb1–O57	2.867(8)	Rb3O417	3.011(8)
Rb1–O5 ⁸	2.867(8)	Sr1–O1	2.500(7)
Rb1–O5	2.867(8)	Gd101	2.409(7)
Rb1–O5 ²	2.867(8)	Gd1-O11	2.409(7)
Rb2-O314	3.270(8)	Gd1-O1 ²	2.409(7)
Rb2–O3	3.270(8)	Gd1-O2 ³	2.276(7)
Rb2-O415	2.942(8)	Gd1-O2 ⁴	2.276(7)
Rb2O416	2.942(8)	Gd1-O2 ⁵	2.276(7)
Rb2-O112	3.147(8)	B1–O2	1.340(13)
Rb201 ²	3.147(8)	B1 ³ -O3	1.389(14)
Rb2-O213	2.915(7)	B1 ³ -O5	1.357(13)
Rb2–O2 ³	2.915(7)	B2–O5	1.471(12)
Rb3–O2	2.921(8)	B2–O4	1.472(12)
Rb3–O2 ³	2.921(8)	B3–O1	1.322(13)
Rb3–O3	3.354(10)	B3 ¹⁵ O4	1.377(14)
Rb3–O3 ³	3.354(10)	B318–O3	1.411(12)
Rb3–O5 ²	2.849(8)		

Table S2. Selected bond lengths for Rb₇SrGd₂(B₅O₁₀)₃.

¹1-Y,+X-Y,+Z; ²1+Y-X,1-X,+Z; ³2/3-X,1/3-X+Y,1/3-Z; ⁴2/3-Y+X,1/3-Y,1/3-Z; ⁵2/3+Y,1/3+X,1/3-Z; ⁶1/3-Y+X,2/3-Y,2/3-Z; ⁷1/3+Y,-1/3+X,2/3-Z; ⁸4/3-X,2/3-X+Y,2/3-Z; ⁹2/3-Y,1/3+X-Y,1/3+Z; ¹⁰2/3+X,1/3+Y,1/3+Z; ¹¹2/3+Y-X,1/3-X,1/3+Z; ¹²+Y,-1+X,-Z; ¹³1/3-Y,-1/3+X-Y,-1/3+Z; ¹⁴-Y+X,-Y,-Z; ¹⁵4/3+Y-X,2/3-X,-1/3+Z; ¹⁶2/3+Y,-2/3+X,1/3-Z; ¹⁷-1/3-Y+X,1/3-Y,1/3-Z; ¹⁸2/3-Y,-2/3+X-Y,1/3+Z

Table S3 Selected bond angles for Rb₇SrGd₂(B₅O₁₀)₃.

Atoms	Angle/°	Atoms	Angle/°
O1-Gd1-O1 ¹	76.0(2)	O2 ³ -Gd1-O2 ⁴	95.3(2)
O1-Gd1-O1 ²	76.0(2)	O2-B1-O3 ⁵	118.5(10)
O1 ² -Gd1-O1 ¹	76.0(2)	O2-B1-O5 ⁵	122.4(10)
O2 ⁴ -Gd1-O1 ¹	86.5(2)	O5 ⁵ -B1-O3 ⁵	119.0(9)
O24-Gd1-O1	162.3(3)	O5-B2-O5 ⁶	107.8(12)
O2 ³ -Gd1-O1	86.5(2)	O5 ⁶ -B2-O4	111.3(4)
O2 ⁴ -Gd1-O1 ²	102.0(3)	O5-B2-O4 ⁶	111.3(4)
O2 ⁵ -Gd1-O1 ¹	162.3(3)	O5-B2-O4	108.7(4)
O2 ³ -Gd1-O1 ¹	102.0(3)	O5 ⁶ -B2-O4 ⁶	108.7(4)
O2 ³ -Gd1-O1 ²	162.3(3)	O4-B2-O4 ⁶	109.1(12)
O2 ⁵ -Gd1-O1	102.0(3)	O1- B3- O3 ¹⁴	121.1(10)
O2 ⁵ -Gd1-O1 ²	86.5(3)	O1-B3-O4 ¹⁶	121.2(9)
O2 ⁵ -Gd1-O2 ⁴	95.3(2)	O4 ¹⁶ -B3-O3 ¹⁴	117.6(9)
O2 ³ -Gd1-O2 ⁵	95.3(2)		

¹1-Y, +X-Y, +Z; ²1+Y-X, 1-X, +Z; ³2/3-X, 1/3-X+Y, 1/3-Z; ⁴2/3-Y+X, 1/3-Z; ⁵2/3+Y, 1/3+X, 1/3-Z; ⁶1/3-Y+X, 2/3-Y, 2/3-Z; ⁷4/3-X, 2/3-X+Y, 2/3-Z; ⁸1/3+Y, -1/3+X, 2/3-Z; ⁹2/3+X, 1/3+Y, 1/3+Z; ¹⁰2/3-Y, 1/3+X-Y, 1/3+Z; ¹¹2/3+Y-X, 1/3-X, 1/3+Z; ¹²+Y, -1+X, -Z; ¹³1/3-Y, -1/3+X-Y, -1/3+Z; ¹⁴-Y+X, -Y, -Z; ¹⁵2/3+Y, -2/3+X, 1/3-Z; ¹⁶4/3+Y-X, 2/3-X, -1/3+Z; ¹⁷-1/3-Y+X, 1/3-Y, 1/3-Z; ¹⁸1+Y, +X, -Z; ¹⁹2/3-Y, -2/3+X-Y, 1/3+Z; ²⁰1/3+Y-X, 2/3-X, -1/3+Z; ²¹4/3-X, 2/3-X+Y, -1/3-Z; ²²1/3+Y, -1/3+X, -1/3-Z; ²³1/3-Y+X, 2/3-Y, -1/3-Z

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Gd1	12.9(3)	12.9(3)	13.1(3)	0	0	6.43(14)
Rb1	14.0(6)	14.0(6)	38.4(12)	0	0	7.0(3)
Rb2	23.0(7)	25.2(8)	36.1(8)	-15.5(6)	-7.8(3)	12.6(4)
Rb3	14.0(7)	26.0(6)	21.6(7)	-0.8(2)	-1.6(5)	7.0(3)
O1	25(4)	24(4)	24(3)	0(3)	0(3)	19(4)
O2	31(5)	24(5)	21(3)	-7(3)	-2(3)	18(4)
O3	32(6)	21(4)	34(4)	9(3)	-23(4)	-2(4)
O5	19(4)	15(4)	23(4)	3(3)	-2(3)	6(3)
O4	26(4)	29(4)	24(4)	-13(3)	-8(3)	22(4)
В3	22(7)	26(7)	18(5)	-5(5)	0(5)	22(6)
B2	13(8)	17(6)	20(7)	-2(3)	-4(5)	7(4)
B1	21(7)	19(6)	19(5)	-2(4)	-2(4)	15(6)
Sr1	10.6(6)	10.6(6)	1.6(7)	0	0	5.3(3)

Table S4 Anisotropic displacement parameters (Å²×10³) for Rb₇SrGd₂(B₅O₁₀)₃. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Mode description	$Rb_7SrGd_2(B_5O_{10})_3 (cm^{-1})$		
asymmetric stretching of [BO ₃] ³⁻	1363, 1250, 1190		
asymmetric stretching vibrations [BO ₄] ⁵⁻	1034, 933		
symmetric stretching of [B ₅ O ₁₀] ⁵⁻	777, 734		
bending vibrations of $[BO_3]^{3-}$ and $[BO_4]^{5-}$	487-611		

Table S5. Assignments of the infrared absorption peaks for $Rb_7SrGd_2(B_5O_{10})_3$.