Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Triple-bridged helical binuclear copper(I) complexes. *Head-to-head* and *head-to-tail* isomerism and the solid-state luminescence

Aliia V. Shamsieva,^{*a} Elvira I. Musina,^a Tatiana P. Gerasimova,^a Igor D. Strelnik,^a Anna G. Strelnik,^a Ilya E. Kolesnikov,^b Alexey A. Kalinichev,^b Daut R. Islamov,^a Aida I. Samigullina,^a Peter Lönnecke,^c Sergey A. Katsyuba,^a Evamarie Hey-Hawkins,^c Andrey A. Karasik^a, Oleg G. Sinyashin^a

 ^{a.} Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
^{b.} Center for Optical and Laser Materials research. Research Park of St. Petersburg State University.

 ^{b.} Center for Optical and Laser Materials research, Research Park of St. Petersburg State University, Ulianovskaya Street 5, 198504 St. Petersburg, Russian Federation
^{c.} Institut für Anorganische Chemie der Universität Leipzig, 29 Johannisallee, 04103 Leipzig, Germany

Contents

Table S1. The crystallographic data for single crystals of 1HH, 2HH, 2HH, 3HT, 4HT.	3
Comments on the structure of $1HH^{*}[Cu_{2}Br_{0.18}Cl_{0.82}(C_{9}H_{12}NP)_{3}][(Cl)(H_{2}O)_{3}]$	4
Figure S1. Monocation of $1HH^{*}[Cu_{2}Br_{0.18}Cl_{0.82}(C_{9}H_{12}NP)_{3}].$	5
Figure S2. Disordered water-cationic chain of 1HH	5
Figure S3. The theoretical powder diffractogram for compound 1HH and the experimental powder diffractograms of polycrystalline powder sample	6
Figure S4. The theoretical powder diffractogram for compound 2 HH and the experimental powder diffractograms of polycrystalline powder sample	6
Figure S5. The theoretical powder diffractogram for compound 3 HT and the experimental powder diffractograms of polycrystalline powder sample	7
Figure S6. The theoretical powder diffractogram for compound 4 HT and the experimental powder diffractograms of polycrystalline powder sample	7
Figure S7. The variable-temperature ¹ H NMR spectra of 4 in CD ₂ Cl ₂ .	8
Figure S8. HOMOs and LUMOs of S_0 states of HH and HT isomers of 2 and 3 , calculated on the optimized T_1 structures.	8
Table S2. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 2 HH	9
Table S3. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 2 HT	10

Table S4. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 3 HH	11
Table S5. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 3 HT	13
Table S6. Selected structural parameters predicted for S_0 and T_1 optimized geometries of 2HT, 2HH, 3HT, 3HH	14
Figure S9. Optimized structures and predicted bond lengths for S ₀ and T ₁ states of 2 HT, 2 HH, 3 HT, 3 HH	14
Figure S10. Plot of spin density calculated for T ₁ optimized geometries of 2 HT, 2 HH, 3 HT, 3 HH	15

Compound	1HH	2 HT	2 HH	3 HT	4 HT
Method of crystallization	The crystals were grown from chloroform/ethanol mother liquor of 1 HH	The crystals were grown by slow evaporation of chloroform solution of 2 HH	The crystals were grown by slow evaporation of an ethanol mother liquor of 2 HH The crystals were grown by vapor diffusion of diethyl ether into a dichloromethane solution of 3 HH		The crystals were grown by vapor diffusion of diethyl ether into a dichloromethane solution of 4 HH
Molecular formula	$\begin{array}{c} C_{27}H_{36}Cu_{2}Br_{0.18}Cl_{0.82}N_{3}P\\ _{3}^{+}\left(Cl^{-}\right) \times 3H_{2}O]\end{array}$	$\begin{array}{l} C_{27}H_{36}BrCu_2N_3P\\ {}_3^+\left(Br^{-}\right)\times 2EtOH \end{array}$	$\begin{array}{c} C_{27}H_{36}BrCu_2N_3P_3{}^{1+} \\ Br^{1-} \end{array}$	$\begin{array}{c} C_{27}H_{36}Cu_2N_3P_3{}^{2+}2(B\\ F_4{}^{-})\end{array}$	$\begin{array}{c} C_{30}H_{42}Cu_2N_3P_3{}^{2+}\ 2(B\\ F_4{}^{1-})\times CH_2Cl_2 \end{array}$
Empirical formula	$C_{27}H_{42}BrCl_2Cu_2N_3O_3P_3$	$\begin{array}{c} C_{31}H_{48}Br_{2}Cu_{2}N_{3}\\ O_{2}P_{3} \end{array}$	$C_{27}H_{36}Br_2Cu_2N_3P_3$	$C_{27}H_{36}Cu_2N_3P_3B_2F_8\\$	$\begin{array}{c} C_{31}H_{44}Cu_2N_3P_3B_4F_8\\ Cl_2 \end{array}$
Formula weight	755.53	874.53	782.40	796.20	923.20
Temperature [K]	130(2)	170(2)	100(2)	150(2)	100(2)
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Trigonal	Triclinic	Monoclinic	Triclinic	Monoclinic
Space group	P3c1 (No. 165)	P1 (No. 2)	C2/c (No. 15)	P ¹ (No. 2)	$P2_1/n$ (No. 14)
Unit cell dimensions					
a [Å]	1429.57(2)	922.70(5)	25.0528(18)	10.1721(5)	14.598(2)
b [Å]	1429.57(2)	1407.96(6)	13.4498(10)	12.2241(6)	17.269(2)
c [Å]	1788.33(2)	1466.01(5)	18.7389(13)	14.7284(7)	31.380(4)
α [deg]	90	84.174(3)		90.611(1)	
β [deg]	90	78.867(4)	94.492(3)	103.374(1)	100.502(6)
γ [deg]	120	76.930(4)		99.224(1)	
Volume [Å ³]	3165.1(1)	1816.94(15)	6294.8(8)	1756.52(15)	7778.2(17)
Z	4	2	8	2	8
$\rho_{(calculated)}\left[g/cm^3\right]$	1.586	1.599	1.651	1.505	1.577
μ [mm ⁻¹]	1.910	3.533	4.065	1.413	1.421
F(000)	1557	888	3136	808	3760
Crystal size [mm ³]	0.30 x 0.15 x 0.10	0.25 x 0.20 x 0.05	$0.534 \times 0.268 \times 0.25$	0.272 × 0.141 × 0.123	0.458 × 0.318 × 0.312
Θ_{Min} - Θ_{Max} [deg]	2.278 to 32.560	1.992 to 32.635	2.002 to 25.805	1.423 to 30.063	1.320 to 25.383
Index ranges	$-21 \le h \le 21, -21 \le k \le 20, -27 \le l \le 26$	$-13 \le h \le 13, -21$ $\le k \le 21, -21 \le l$ ≤ 1	$-30 \le h \le 30, -16 \le k$ $\le 16, -22 \le l \le 22$	$-14 \le h \le 14, -17 \le k$ $\le 17, -20 \le l \le 20$	$-17 \le h \le 17, -20 \le k$ $\le 20, -36 \le l \le 37$

Table S1. The crystallographic data for single crystals of 1HH, 2HH, 2HH, 3HT, 4HT.

Reflections collected	41937	27187	46204	79742	63265
Indp. reflections [R _{int}]	3716 [0.0413]	11896 [0.0326]	6020 [0.0663]	10279 [0.0395]	14194 [0.1141]
Completeness $[\Theta_{Max}]$	100% (30.510°)	100% (30.510°)	99.6% (25.242°)	100% (25.242°)	99.9% (25.242°)
T _{Max} / T _{Min}	1.00000 / 0.90525	1.00000 / 0.79607	0.1752 / 0.0882	0.7543 / 0.6877	0.5072 / 0.4140
Restraints / parameters	21 / 136	84 / 427	293 / 418	37 / 416	556 / 1082
Gof on F ²	1.026	1.023	1.651	1.031	1.085
$\begin{array}{l} R_1 / wR_2 \\ (I \ge 2\sigma(I)) \end{array}$	0.0449 / 0.1165	0.0426 / 0.0932	0.0569 / 0.1551	0.0293 / 0.0660	0.0612 / 0.1414
R ₁ / wR ₂ (all data)	0.0714 / 0.1304	0.0712 / 0.1069	0.0736 / 0.1661	0.0428 / 0.0705	0.1178 / 0.1758
Residual electron density [e·Å ⁻³]	0.549 and -1.086	1.262 and -0.977	1.852 and -0.811	0.568 and -0.415	1.180 and -1.249
CCDC No	2003271	20032712	2000253	2000251	2000252

Comments on the structure of 1HH*[Cu₂Br_{0.18}Cl_{0.82}(C₉H₁₂NP)₃][(Cl)(H₂O)₃: Structure solution with SHELXT-2014 (Dual-space method). Anisotropic refinement of all non-hydrogen atoms, except disordered atoms C(7'), C(8'), Cl(2) and O(2), with SHELXL-2018. All hydrogen atoms were calculated on idealized positions. The PC₄H₈-ring is disordered with a ratio of 0.77(1):0.23(1). The complex was synthesized from CuCl (> 99 purity) without bromo containing solvents or reagents. However, assuming a Cl(1) / Br(1) disorder (ratio 0.819(4) : 0.181(4)), the final structure parameters could be improved. The molecular formulae of the compound may be given as [Cu₂Br_{0.18}Cl_{0.82}(C₉H₁₂NP)₃] [(Cl)(H₂O)₃] (Fig. S1). Water molecules (O2) and the chloride anions (Cl2) are disordered within the [(H₂O)₆Cl₂]-cube (Fig. S2). Hydrogen atoms of this water-chloride-cube are only calculated for illustration and are disordered as well, e. g. the hydrogen atom H1O1 of O1 can only once interact with an adjacent O1' atom. This hydrogen disorder was disregarded.

Figure S1. Monocation of 1HH*[Cu₂Br_{0.18}Cl_{0.82}(C₉H₁₂NP)₃]. Hydrogen atoms are omitted for clarity.

Figure S2. Disordered water-cationic chain of 1HH on the threefold c-axis with calculated hydrogen donor acceptor bonds for one possible arrangement (Disordered non-hydrogen atoms are given in transparent mode). The "water-chloride-cube" is located on a special position (Wyckoff letter b with the site symmetry $3 \cdot \cdot$) whereas O1 and O1' are related by twofold rotation (Wyckoff letter a with the site symmetry $3 \cdot 2 \cdot$).

Figure S3. The theoretical powder diffractogram (black line) calculated from single X-ray data for compound 1HH and the experimental powder diffractograms of polycrystalline powder sample (red line).

Figure S4. The theoretical powder diffractogram (blue line) calculated from single X-ray data for compound **2**HH and the experimental powder diffractograms of polycrystalline powder sample (red line).

Figure S5. The theoretical powder diffractogram (blue line) calculated from single X-ray data for compound **3**HT and the experimental powder diffractograms of polycrystalline powder sample (violet line).

Figure S6. The theoretical powder diffractogram (blue line) calculated from single X-ray data for compound **4**HT and the experimental powder diffractograms of polycrystalline powder sample (brown line).

Figure S7. The variable-temperature ¹H NMR spectra of 4 in CD₂Cl₂.

Figure S8. HOMOs and LUMOs of S_0 states of HH and HT isomers of **2** and **3**, calculated on the optimized T_1 structures.

λ, nm	f	assignment	Plots of frontier orbitals, mostly contributing the transition				
337	0.004	HOMO->LUMO					
333	0.003	mixed					
331	0.006	HOMO ⁻¹ ->LUMO ⁺¹					
320	0.002	mixed					
319	0.001	mixed					
316	0.002	mixed					
310	0.007	HOMO ⁻² ->LUMO					
309	0.000	HOMO-2->LUMO+2					
308	0.016	HOMO ⁻¹ ->LUMO ⁺¹					

Table S2. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 2HH.

λ, nm	f	assignment	Plots of frontier orbitals, mostly contributing the transition				
330	0.035	HOMO->LUMO					
326	0.008	HOMO->LUMO ⁺¹					
319	0.008	HOMO->LUMO ⁺²					
304	0.007	mixed					
300	0.037	HOMO ⁻¹ ->LUMO ⁺²					
298	0.011	mixed		- char			
296	0.010	HOMO->LUMO ⁺³					

Table S3. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 2HT.

λ, nm	f	assignment	Plots of frontier orbitals, mostly contributing the transition			
323	0.001	HOMO->LUMO				
317	0.0041	HOMO ⁻⁴ ->LUMO				
311	0.0046	HOMO->LUMO HOMO->LUMO ⁺¹				
310	0.0038	HOMO-3->LUMO+2				
305	0.0018	HOMO-1->LUMO+1				
296	0.0132	HOMO ⁻³ ->LUMO ⁺¹				

Table S4. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 3HH.

292	0.0771	HOMO-2->LUMO+2	
288	0.0279	HOMO ⁻³ ->LUMO ⁺²	
285	0.0719	HOMO ⁻⁴ ->LUMO ⁺³	
280	0.0158	HOMO ⁻³ ->LUMO ⁺⁴	
279	0.0182	HOMO ⁻² ->LUMO ⁺¹ HOMO ⁻³ ->LUMO ⁺¹	

λ, nm	f	assignment	Plots of frontier orbitals, mostly contributing the transition			
325	0.0097	HOMO->LUMO				
304	0.0539	HOMO ⁻¹ ->LUMO				
300	0.0229	HOMO->LUMO ⁺¹				
299	0.0302	HOMO->LUMO ⁺²				
290	0.017	HOMO-1->LUMO+1				
286	0.0045	mixed				
275	0.0074	mixed				
275	0.0107	HOMO ⁻⁴ ->LUMO				

Table S5. Calculated excitation energies (nm), oscillator strengths (f), and assignments of the electronic transitions of 3HT.

273	0.0141	HOMO ⁻² ->LUMO ⁺²		
-----	--------	---	--	--

Table S6. Selected structural parameters predicted for S_0 and T_1 optimized geometries of 2HT, 2HH, 3HT, 3HH.

	2 H	łΤ	2 H	Η	3 H	łΤ	31	łΤ
	S_0	T_1	S_0	T ₁	S_0	T ₁	S ₀	T ₁
dCu-Cu, Å	2.60	2.52	2.61	2.56	2.57	2.59	2.61	2.49
dCu-Br/ dCu-F, Å	2.45	2.39	2.41	2.44	2.19	2.09	2.13	2.08
dCu-N, Å	2.04	1.91	2.05	1.88	2.04	1.94	2.05	1.88
dCu-P, Å	2.29	2.29	2.28	2.31	2.30	2.30	2.30	2.31
dN-C, Å	1.34	1.40	1.35	1.41	1.35	1.39	1.35	1.41
dC-P, Å	1.85	1.78	1.85	1.80	1.85	1.78	1.85	1.79
N-Cu-Cu-P, °	5	45	27	48	-6	-34	36	48
N-Cu-N/ N-Cu-P, °	129	153	119	152	137	153	125	151
Cu-Cu-Br/ Cu-Cu-F, °	163	157	177	176	169	160	177	165

Figure S9. Optimized structures and predicted bond lengths for S_0 and T_1 states of 2HT, 2HH, 3HT, 3HH.

Figure S10. Plot of spin density calculated for T₁ optimized geometries of **2**HT, **2**HH, **3**HT, **3**HH.