SuPPORTING INFORMATION

Experimental: 2
X-Ray Tables 7
Calculation Details HOMO LUMO Representations 10
Notes and references 15

EXPERIMENTAL:

General Considerations.
All air- and moisture-sensitive manipulations were carried out using standard vacuum line Schlenk techniques or in an MBraun inert atmosphere dry-box containing an atmosphere of purified argon. THF- $d_{8}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ were purchased from Cambridge Isotope Laboratories. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} and distilled, THFd_{8} and $\mathrm{C}_{6} \mathrm{D}_{6}$ were distilled over potassium. All glassware was stored in a $120^{\circ} \mathrm{C}$ oven for several hours and was degassed prior to use. Solvents were degassed prior to the filtration over alumina in the PureSolv-purification system by "inert", the water content was determined by Karl Fischer titration. Solvents were additionally tested using a ketyl test to guarantee oxygen and moisture free conditions. Phosphorus halides were used as purchased. The $\mathrm{Na}(\mathrm{OCP})$ and the azadiphospholide $\mathrm{Na}[1]^{1},\left[\mathrm{Mo}(\mathrm{Mes})(\mathrm{CO})_{3}\right]^{2}$ have been synthesized using literature procedures.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker spectrometers operating at 300,400 and $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at $75.46 \mathrm{MHz} 100.61 \mathrm{MHz} .{ }^{31} \mathrm{P}$ NMR at $101.28,121.494$ and 161.97 MHz . All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to SiMe_{4} using the ${ }^{1} \mathrm{H}$ (residual) and ${ }^{13} \mathrm{C}$ chemical shifts of the solvent as a secondary standard. Peak widths at half heights (in Hz) are given for broad signals. Infrared spectra were collected on a Bruker-alpha FT-IR-spectrometer. UV/Vis spectra were recorded on UV/VIS/NIR lambda-19-spectrometer in a cell with a 1 or 2 mm path length. Elemental analyses were performed at the Mikrolabor of ETH Zürich.

Single crystals suitable for X-ray diffraction were coated with polyisobutylene oil in a glovebox, transferred to a nylon loop and then transferred to the goniometer of a Bruker X8 APEX2 or D8-Venture diffractometer or on an Oxford Excalibur equipped with a molybdenum X-ray tube ($\lambda=0.71073 \AA$). Preliminary data was collected to determine the crystal system. The space group was identified and the data were processed using the Bruker SAINT+ program and corrected for absorption using SADABS. The structures were solved using direct methods (SHELXS) on OLEX2 completed by Fourier synthesis and refined by full-matrix least-squares procedures.

Preparation of compound 2: $\mathrm{Na}[\mathbf{1}](1.7 \mathrm{~g}, 4.6 \mathrm{mmol})$ was dissolved in 20 mL of THF and was added dropwise to a solution of $\mathrm{PhSiCl}_{3}(322 \mathrm{mg}, 1.5 \mathrm{mmol})$ in THF cooled to $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature and was stirred for additional 2 hours. The reaction mixture was filtered through Celite and the volatiles were removed under reduced pressure. The product was washed with a minimal amount of a THF/diethylether (1:1) mixture. To yield $632 \mathrm{mg}(70 \%)$ of a yellow solid. MF: $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Si}$, MW: 609.35 g/mol, MP: $178^{\circ} \mathrm{C}$, EA[calc]: C, 47.31; H, 2.81; N, 6.90, EA[found]: C, $46.71 ; \mathrm{H}, 2.75 ; \mathrm{N}, 6.97$, Absorption max $[\lambda \mathrm{nm}]: 395.2,341.4,326.8 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=123.07\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=442.58 \mathrm{~Hz}\right), 118.84$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=442.64 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.58(\mathrm{~d}, J=7.08 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}), 8.10(\mathrm{~d}, J=6.84$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}), 7.84-7.96(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 7.65(\mathrm{t}, J=7.52 \mathrm{~Hz}, 1 \mathrm{HCH}), 7.52(\mathrm{t}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 6.89(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 1504.63,1448.88,1430.30,1336.24,1309.93,1246.68,1211.41,1119.90,1067.00,1023.36$, $981.55,882.00,853.53,730.31,689.58$

Preparation of compound $\mathbf{N a}[3]: \mathrm{Na}[\mathbf{1}](1 \mathrm{~g}, 2.52 \mathrm{mmol})$ was dissolved in 20 mL of THF and was added dropwise to a solution of $\mathrm{PhBCl}_{2}(100 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF cooled to $-78^{\circ} \mathrm{C}$. The reaction mixture was warmed up to room temperature and was stirred for additional 2 hours. The reaction mixture was filtered through Celite the solution was concentrated to 5 mL of THF layered with hexanes and placed in the freezer to yield 438 mg (69
\%) of a yellow crystalline solid. MF: $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{BN}_{3} \mathrm{NaO}_{9} \mathrm{P}_{6}$, MW: $993.61 \mathrm{~g} / \mathrm{mol}$ for $\mathrm{Na}[3](\mathrm{THF})_{4}(\mathrm{DME})_{1}$. MP: 168 ${ }^{\circ} \mathrm{C}$ dec. $)$, Absorption max $[\lambda \mathrm{nm}]: 417.6,353.3 ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(121 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8): \delta(\mathrm{ppm})=115.11\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=\right.$ $414.6 \mathrm{~Hz}), 107.11\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=414.6 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{THF}): \delta(\mathrm{ppm})=8.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=5.3,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.85-7(\mathrm{~m}, \mathrm{CH}, 3 \mathrm{H}), 6.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.48(\mathrm{dd}, J=7.0,7.8$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8): \delta(\mathrm{ppm})=175.93\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=3.3,85.9 \mathrm{~Hz}\right), 158.71\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=4.6,64.4\right.$ $\mathrm{Hz}), 131.75(\mathrm{~s}), 126.57\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=21.7 \mathrm{~Hz}\right), 126.1(\mathrm{~s}), 123.9(\mathrm{~s}), 112.52\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=19.3 \mathrm{~Hz}\right), 110.36\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{C}}=2.5\right.$ Hz).

Synthesis of 4: $\mathrm{POCl}_{3}(580 \mathrm{mg}, 3.78 \mathrm{mmol})$ was dissolved in 20 mL THF and was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of the sodium salt of the azadiphospholide $\mathrm{Na}[\mathbf{1}](4.2 \mathrm{~g}, 11.35 \mathrm{mmol}, 3 \mathrm{eq})$ in THF $(15 \mathrm{~mL})$. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. After that time the reaction mixture was warmed up to room temperature whereupon the colour changed from red to yellow and a precipitate was formed. The solvent was removed under reduced pressure and the remaining solid was dissolved in 40 mL of DCM, filtered through Celite and was dried under reduced pressure to give 1.15 g of a yellow powder (55% yield). The solid was extracted twice with THF $(20 \mathrm{~mL})$ to yield another 609 mg of product. Combined $1.759 \mathrm{~g}(84 \%$ yield) of product were isolated. The compound is soluble in THF and DCM and only barely soluble in diethyl ether and toluene and insoluble in hexane. MF: $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}_{7}$, MW: $551.13 \mathrm{~g} / \mathrm{mol}$, MP: $140{ }^{\circ} \mathrm{C}$ (decomposition), EA[calc]: C, 39.23; H, 2.19; N, 7.62, EA[found]: C, 38.99; H, 2.43; N, 7.36, Absorption max [$\lambda \mathrm{nm}]: 395.2,341.4,326.8 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $121.5 \mathrm{MHz}): \delta(\mathrm{ppm})=140.24\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=446.5 \mathrm{~Hz}\right), 129.41\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=446.5 \mathrm{~Hz}\right),-20.78(\mathrm{~s}, \mathrm{PO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $300 \mathrm{MHz}): \delta(\mathrm{ppm})=8.18-8.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 7.81-7.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 6.75-6.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=162.84\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=72.88 \mathrm{~Hz}\right), 158.82\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=86.85 \mathrm{~Hz}\right), 128.42(\mathrm{~d}$, $\left.J_{\mathrm{P}, \mathrm{C}}=23.27 \mathrm{~Hz}\right), 117.96\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=18.72 \mathrm{~Hz}\right), 115.40\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.68 \mathrm{~Hz}\right) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 2963,1261(\mathrm{P}=\mathrm{O}), 1091,1021$, 799

Preparation of complex 5: Compound $2(100 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\left[\mathrm{MesMo}(\mathrm{CO})_{3}\right](45 \mathrm{mg}, 0.15 \mathrm{mmol})$ were placed in a scintillation vial in the glovebox and were suspended in 4 mL of THF. The reaction mixture was left unstirred overnight. The colour of the reaction mixture changed from yellow to red and was filtered then over a glass filter and was layered with hexane before it was placed in the freezer at $-35^{\circ} \mathrm{C}$ for crystallization. After 72 hours a dark yellow crystalline material was formed which was filtered off and washed with hexane to yield 64 $\mathrm{mg}(74 \%)$ of product. Once crystallized the product was nearly insoluble in the common deuterated organic solvents. MF: $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{MoN}_{3} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Si}$, MW: $789.34 \mathrm{~g} / \mathrm{mol}$, MP: no $<400^{\circ} \mathrm{C}, \mathrm{EA}$ [calc]: C, $41.08 ; \mathrm{H}, 2.17 ; \mathrm{N}, 5.32$, EA[found]: C, 40.98; H, 2.08; N, 5.27, Absorption max $[\lambda \mathrm{nm}]: 426.7,333.7,270.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $141.77(\mathrm{~m}), 98.27(\mathrm{~m}) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 1959.58,1896.16,1870.90,1609.73,1355.60,1308.51,1253.60,1221.42$, 1123.46, 875.45, 724.85

Preparation of compound $\mathbf{N a}[\mathbf{6}]: \mathrm{Na}[\mathbf{3}](200 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\left[\mathrm{MesMo}(\mathrm{CO})_{3}\right](80 \mathrm{mg}, 0.26 \mathrm{mmol})$ were placed in a scintillation vial in the glovebox and 4 mL of THF and $18 \mathrm{C} 6(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added. The reaction was stirred overnight to form a yellow microcrystalline solid. The colour of the reaction mixture changed from yellow to red. The reaction mixture was filtered to isolate 230 mg (95%) of a yellow solid of composition $\mathrm{Na}(18 \mathrm{C} 6)_{1}(\mathrm{THF})_{2}\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathbf{3})\right]$. The mother liquor was placed in the freezer to obtain single crystals suitable for X-ray diffraction. MF: $\mathrm{C}_{47} \mathrm{H}_{57} \mathrm{BMoN}_{3} \mathrm{NaO}_{14} \mathrm{P}_{6}$, MW: $1203,6 \mathrm{~g} / \mathrm{mol}$, MP: $198{ }^{\circ} \mathrm{C}$ (dec.), EA[calc]: C, $46.90 ; \mathrm{H}$, 4.77; N, 3.49, EA[found]: C, 45.46; H 4.40; N 3.53; Absorption max [$\lambda \mathrm{nm}]: 445.1 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$):
$=\delta 8.29\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 7.97\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 7.69\left(\mathrm{t}, J=7.3,3 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 7.41(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{\text {arom }}\right), 7.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 6.64\left(\mathrm{dd}, J=7.1,8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right), 6.56\left(\mathrm{dt}, J=1.3,6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=125.6(\mathrm{~m}), 89.3(\mathrm{~m})$ with ${ }^{1} J_{\mathrm{A}, \mathrm{X}}=450.1 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{A}^{‘}}=38.03 \mathrm{~Hz}, J_{\mathrm{A}, \mathrm{X}^{\bullet}}=$ $2.2 \mathrm{~Hz},{ }^{1} J_{\mathrm{X}, \mathrm{X}^{4}}=9.43 \mathrm{~Hz} .{ }^{13} \mathrm{C}-\mathrm{NMR}(125.8 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8): \delta(\mathrm{ppm})=220.0(\mathrm{~m}$, broad, CO$), 173.7$ (broad, CP), $160.73\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=67.95 \mathrm{~Hz}, \mathrm{CP}\right), 131.5(\mathrm{~s}), 127.97\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=26.23 \mathrm{~Hz}\right), 127.7(\mathrm{~s}), 126.8(\mathrm{~s}), 126.4,125.4(\mathrm{~s}), 116.13$ $\left(1 \mathrm{C}, \mathrm{d}, J_{\mathrm{P}, \mathrm{C}}=20.27 \mathrm{~Hz}\right), 116.14(\mathrm{~s})$.

Preparation of compound 7: $\mathrm{CpTiCl}_{3}(48 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{Na}[\mathbf{1}](210 \mathrm{mg}, 0.65 \mathrm{mmol})$ were placed in a scintillation vial in the glovebox and the solids were covered with 1 mL of hexane. 3 mL of toluene were slowly added. The reaction was let unstirred overnight and the product crystallized over 3 days as purple blocks. The solid was collected on a glass frit. To remove the remaining NaCl , the product was dissolved in THF and was filtered through Celite. The volatiles were removed and 40 mg of a dark purple solid was isolated. The purple reaction solution was layered with hexane and put in the freezer for 14 days to crystallize another 16 mg of the product. A total amount of 56 mg (41% yield) was isolated.

Alternative route for the synthesis of compound 7: $\mathrm{CpTiCl}_{3}(48 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in 10 mL of THF and was cooled to $-78^{\circ} \mathrm{C}$. The $\mathrm{Na}[\mathbf{1}](210 \mathrm{mg}, 0.65 \mathrm{mmol})$ was dissolved in 10 mL of THF and was added slowly under vigorous stirring. It is not recommended to use an excess of the sodium salt of the phospholide $\mathrm{Na}[\mathbf{1}]$. The sodium salt replaced the cyclopentadienyl group to form the product $\mathrm{Na}_{2}\left[\mathbf{8}_{\mathrm{Ti}}\right]$. The reaction mixture was stirred for 1 hour at this temperature before it was warmed up to room temperature. The reaction mixture was left unstirred for 2 hours to settle the precipitate. The mixture was then filtered through Celite. The filtrate was concentrated to roughly 4 mL and was layered with 4 mL of hexane. The layered solution was placed in the freezer at $-35^{\circ} \mathrm{C}$ for one week. Dark purple crystals formed, which were collected on a glass frit and were dried under reduced pressure to obtain $62 \mathrm{mg}(46 \%)$ of a purple solid. MF: $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Ti}$, MW: $617.12 \mathrm{~g} / \mathrm{mol}$, MP: $228{ }^{\circ} \mathrm{C}$, EA[calc]: C, 44.77; H, 2.78; N, 6.81, EA[found]: C, 44.12; H, 2.79; N, 6.43, Absorption max [$\lambda \mathrm{nm}$]: 393, $498 .{ }^{1} \mathrm{H} /{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ but the product slowly decomposes. Therefore the ${ }^{13} \mathrm{C}$ NMR spectrum was measured in THF. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=129.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=444.3 \mathrm{~Hz}\right), 120.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=\right.$ $444.3 \mathrm{~Hz}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.81 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right), 7.86\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.51 \mathrm{~Hz}\right.$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.93 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\right), 6.9-6.75(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}), 6.79(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}), 5.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (THF, $121.5 \mathrm{MHz}): \delta(\mathrm{ppm})=182.60\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=69.97 \mathrm{~Hz}\right), 159.43\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=68.86 \mathrm{~Hz}\right), 127.43\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=22.28 \mathrm{~Hz}, \mathrm{CH}\right)$, $123.6(\mathrm{~s}, \mathrm{CH}), 120.53(\mathrm{~s}, \mathrm{CH}, \mathrm{Cp}), 115.74\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=18.36 \mathrm{~Hz}, \mathrm{CH}\right), 113.38\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.60 \mathrm{~Hz}, \mathrm{CH}\right) . \mathrm{IR}\left[\mathrm{cm}^{-1}\right]$: $1318.85,1281.72,1212.15,1111.04,1013.50,780.15,735.00,687.54$

Preparation of complex $\mathbf{N a}_{2}\left[\mathbf{8}_{\mathbf{T i}}\right](\mathbf{D M E})_{6}$: Titanium tetrachloride di tetrahydrofuran, $\left[\mathrm{TiCl}_{4}(\mathrm{THF})_{2}\right],(400 \mathrm{mg} 1.2$ $\mathrm{mmol})$ was dissolved in 10 mL of THF and then added to a solution of $\mathrm{Na}[\mathbf{1}](2.7 \mathrm{~g} 7.2 \mathrm{mmol})$ in THF. The reaction mixture turned dark green to black immediately. The solution was stirred for 1 h at room temperature. The volatiles were removed under vacuum and the remaining product was dissolved in 20 mL of DCM. The mixture was filtered to remove NaCl . All volatiles were removed under reduced pressure. To the solid, DME (2 mL) and hexanes (8 mL) were added. The suspension was filtered and the product was collected on the glass frit. $1.932 \mathrm{~g}(98 \%)$ of a dark green solid was isolated. The product was recrystallized from a saturated DCM solution at $-30^{\circ} \mathrm{C}$ for single crystals suitable for X-ray structure analysis. MF: $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{18} \mathrm{P}_{12} \mathrm{Ti}$, MW: $1642.87 \mathrm{~g} / \mathrm{mol}$, MP: $137{ }^{\circ} \mathrm{C}$, Absorption max $[\lambda \mathrm{nm}]: 520 \mathrm{~nm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta=111.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=434.5 \mathrm{~Hz}\right)$,
$110.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=434.5 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.58(\mathrm{~m}, \mathrm{CH}, 6 \mathrm{H}), 7.57(\mathrm{~m}, \mathrm{CH}, 6 \mathrm{H}), 6.46$ $(\mathrm{m}, \mathrm{CH}, 6 \mathrm{H}), 6.23(\mathrm{~m}, \mathrm{CH}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=186.2\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=16.99,57.74\right.$ $\mathrm{Hz}), 160.1\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=7.93,52.65 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=17.63 \mathrm{~Hz}\right), 126.9(\mathrm{~s}), 116.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 112.6(\mathrm{~s})$. IR $\left[\mathrm{cm}^{-1}\right]: 1341,1289,1079,1063$

Preparation of complex $\mathbf{N a}_{\mathbf{2}}\left[\mathbf{8}_{\mathbf{Z r}}\right](\mathbf{D M E})_{6}$: Zirconium tetrachloride THF adduct, $\left[\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}\right]$, (97 mg 0.26 mmol) was suspended in 4 mL of THF. To this suspension, $\mathrm{Na}[\mathbf{1}](592 \mathrm{mg} 1.6 \mathrm{mmol}$) in 4 mL of THF was added dropwise while stirring. The solution was stirred for 2 h at room temperature and the volatiles were removed under reduced pressure. The yellow solid was dissolved in DCM and filtered over Celite. The volatiles were removed under reduced pressure and the product was washed with a minimal amount of cold DME (2 mL) and hexanes (3 $\times 4 \mathrm{~mL})$ to give $396 \mathrm{mg}(90 \%)$ of a yellow crystalline material. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis revealed the co-crystallization of two DME molecules per sodium ion. MF: $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{18} \mathrm{P}_{12} \mathrm{Zr}$, MW: $1686.22 \mathrm{~g} / \mathrm{mol}$ (DME) $)_{6}$, MP: $141{ }^{\circ} \mathrm{C}$, Absorption max $[\lambda \mathrm{nm}]: 422.5,356.7,345.8 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=105.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=\right.$ $426.2 \mathrm{~Hz}), 99.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=426.2 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.64(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 7.57(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}), 6.46(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 6.24(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})=184.1\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=5.7,64.7\right.$ $\mathrm{Hz}), 161.7\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=60.4 \mathrm{~Hz}\right), 129.2\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=20.7 \mathrm{~Hz}\right), 126.4(\mathrm{~s}), 116.3\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=18.4 \mathrm{~Hz}\right), 113.6\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=2.0\right.$ Hz), $\operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 3095,2989,2912,2823,1348,1293,1070,1063$

Preparation of complex $\mathbf{N a}_{\mathbf{2}}\left[\mathbf{8}_{\mathbf{H f}}\right](\mathbf{D M E})_{6}$: Hafnium tetrachloride (32 mg 0.1 mmol) and $\mathrm{Na}[\mathbf{1}](223 \mathrm{mg} 0.6$ mmol) were suspended in 4 mL of DME. The solution was stirred for 16 h at room temperature. The yellow product precipitated out of the solution and was filtered off. The solid was extracted with DCM and filtered again to remove the NaCl . The volatiles were removed under reduced pressure to yield $138 \mathrm{mg}(78 \%)$ of a yellow solid. Single crystals suitable for X-ray analysis were grown from a DCM solution at $-35^{\circ} \mathrm{C}$. MF: $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{18} \mathrm{P}_{12} \mathrm{Hf}$, MW: $1773.49 \mathrm{~g} / \mathrm{mol}(\mathrm{DME})_{6}, \mathrm{MP}: 143.3^{\circ} \mathrm{C}$, Absorption max [$\left.\lambda \mathrm{nm}\right]: 409.0 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 121.5 \mathrm{MHz}\right): \delta$ $(\mathrm{ppm})=104.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=426.3 \mathrm{~Hz}\right), 98.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=426.3 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.50(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{CH}), 7.50(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 6.39(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}), 6.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right): \delta(\mathrm{ppm})=$ $171.3\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=66.1 \mathrm{~Hz}, J_{\mathrm{P}, \mathrm{C}}=4.3 \mathrm{~Hz}\right), 160.5\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=61.3 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=21.0 \mathrm{~Hz}\right), 125.0(\mathrm{~s}), 115.0(\mathrm{~d}$, $\left.J_{\mathrm{P}, \mathrm{C}}=18.8 \mathrm{~Hz}\right), 112.2(\mathrm{~s}) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 3095,2989,2910,2823,1399,1351,1259,1113,1080,1013$

Preparation of complex 9: $7(31 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in 6 mL of THF. [MoMes(CO) $)_{3}$] $15 \mathrm{mg}, 0.05$ mmol) was added to the solution and the reaction mixture was stirred for 15 minutes. The reaction was filtered over a glass filter paper and left unstirred over the weekend, upon dark red crystals grow directly from the reaction mixture. $32 \mathrm{mg}(80 \%)$ of product was isolated. The product was nearly insoluble in common deuterated organic solvents. MF: $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{MoN}_{3} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Ti}$, MW: $797.11 \mathrm{~g} / \mathrm{mol}$, MP: no $<400^{\circ} \mathrm{C}$, EA[calc]: C, 39.18; H, 2.15; Mo, 12.04; N, 5.27, EA[found]: C, 39.36; H, 2.42; N, 4.89, Absorption max [$\lambda \mathrm{nm}$]: 423.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (THF-d8, 300 MHz): δ $(\mathrm{ppm})=8.47-8.39(\mathrm{~m}, \mathrm{br}, 3 \mathrm{H}), 7.74-7.64(\mathrm{~m}, \mathrm{br}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 7.05-6.92(\mathrm{~m}, \mathrm{br}, 3 \mathrm{H}), 6.79-6.69(\mathrm{~m}, \mathrm{br}$, $3 H) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 1943.31(\mathrm{CO}), 1862.74(\mathrm{CO}), 1319.60,1290.62,1253.59,732.10$

Attempts for the preparation of complex $\mathbf{N a}_{2}\left[\mathbf{1 0}_{\mathrm{Ti}}\right]: \mathrm{Na}_{2}\left[\mathbf{8}_{\mathrm{Ti}}\right](190 \mathrm{mg}, 0.116 \mathrm{mmol})$, 18-crown-6 (54 mg, 0.2 $\mathrm{mmol})$ and $\left[\mathrm{MoMes}(\mathrm{CO})_{3}\right](60 \mathrm{mg}, 0.202 \mathrm{mmol})$ were dissolved in 12 mL of THF. The solution was left unstirred overnight upon a dark green micro crystalline solid precipitated from the reaction mixture. The solid was filtered off and dried under reduced pressure. 220 mg (96%) were isolated. The product is insoluble in common organic solvents. MF: $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{TiMo}_{2} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{24} \mathrm{P}_{12}$, MW: $1990.71 \mathrm{~g} / \mathrm{mol}$, IR [$\left.\mathrm{cm}^{-1}\right]$: 1925 (CO), 1829 (CO)

Preparation of complex $\mathbf{N a}_{2}\left[\mathbf{1 0}_{\mathbf{H f}}\right]: \mathrm{Na}_{2}\left[\mathbf{8}_{\mathbf{H f}}\right](180 \mathrm{mg}, 0.101 \mathrm{mmol})$, 18 -crown-6 ($54 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\left[\operatorname{MoMes}(\mathrm{CO})_{3}\right](60 \mathrm{mg}, 0.202 \mathrm{mmol})$ were dissolved in 12 mL of DCM. The solution was left unstirred for 16 hours upon dark red crystals grow directly from the reaction mixture. The solid was filtered off and dried under reduced pressure to isolate $132 \mathrm{mg}(61 \%)$. The product is only badly soluble in THF and nearly insoluble in other common deuterated organic solvents. Single crystals for X-ray analysis were picked from the first crop of isolated product. MF: $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{HfMo}_{2} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{24} \mathrm{P}_{12}$, MW: $2121.39 \mathrm{~g} / \mathrm{mol}$, MP: $224^{\circ} \mathrm{C}$, Absorption max [$\lambda \mathrm{nm}$]: 428.6, 443.2 (shoulder). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMF}-\mathrm{d} 7,300 \mathrm{MHz}): \delta(\mathrm{ppm})=7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $5.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}(\mathrm{DMF}-\mathrm{d} 7,121.5 \mathrm{MHz}): \delta(\mathrm{ppm})=111.8(\mathrm{~m}), 84.5(\mathrm{~m}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ (DMF$\mathrm{d} 7,75.5 \mathrm{MHz}): \delta(\mathrm{ppm})=214.54(\mathrm{~m}$, carbonyl $), 176.31(\mathrm{~s}-\mathrm{broad}), 154.70\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=67.35 \mathrm{~Hz}\right), 122.68\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=\right.$ $25.67 \mathrm{~Hz}), 118.1(\mathrm{~s}), 110.75\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=18.71 \mathrm{~Hz}\right), 107.9(\mathrm{~s}) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 2870.07,1929.57(\mathrm{CO}), 1817.34(\mathrm{CO})$, $1605.99,1500.46,1450.60,1394.73,1348.95,1293.22,1245.96,1088.34,1015.54,945.82,775.56,732.02$, 689.30

Preparation of compound 11: $\mathrm{Na}[1](740 \mathrm{mg}, 2 \mathrm{mmol})$ was suspended in toluene and $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right){ }_{2} \mathrm{PCl}(532 \mathrm{mg}, 2$ mmol) dissolved in 5 mL of toluene was added dropwise to the stirred suspension. The colour of the mixture changed from orange to dark yellow. The mixture was stirred for 16 hours at room temperature before it was filtered through Celite. The volatiles were removed to isolate 655 mg of a yellow solid (82%). Single crystals were obtained from a saturated toluene solution at $-35^{\circ} \mathrm{C}$. In solution two isomers were observed, only isomer A was fully characterized by NMR spectroscopy. MF: $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{OP}_{3}$, MW: $399.4 \mathrm{~g} / \mathrm{mol}$, MP: $148^{\circ} \mathrm{C}$, $\mathrm{EA}[$ calc]: C, 54.13; H, 8.08; N, 10.52, EA[found]: C, $54.00 ; \mathrm{H}, 7.96 ; \mathrm{N}, 10.58$, Absorption max [$\lambda \mathrm{nm}$]: 398, 331 Isomer A: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 121.5 \mathrm{MHz}\right): \delta(\mathrm{ppm})=134.3\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=121.8 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{P}}=18.7 \mathrm{~Hz}\right), 121.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=425.5\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{P}, \mathrm{P}}=20.0 \mathrm{~Hz}\right), 109.0\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=425.5 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=120.7 \mathrm{~Hz}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right): \delta(\mathrm{ppm})=8.38(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.03 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.64\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.84 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 6.28$ (pseudo-t, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 6.15\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.03 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=9.11 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 3.52\left(\right.$ sept, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.55 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}\right), 1.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $\left.6.55 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 125.8 \mathrm{MHz}\right): \delta(\mathrm{ppm})=173.98\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=22.12,85.97 \mathrm{~Hz}\right), 162.67$ $\left(\mathrm{dd}, J_{\mathrm{P}, \mathrm{C}}=6.53,71.56 \mathrm{~Hz}\right), 130.03\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=22.32 \mathrm{~Hz}\right), 123.9(\mathrm{~s}), 115.85\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=20.05 \mathrm{~Hz}\right), 114.30\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=\right.$ $2.87 \mathrm{~Hz}), 45.91\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=12.59 \mathrm{~Hz}\right), 24.50\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=9.14 \mathrm{~Hz}\right), 24.07\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{C}}=5.53 \mathrm{~Hz}\right) . \operatorname{IR}\left[\mathrm{cm}^{-1}\right]: 2970.63$, 2926.97, 2865.76, 1453.98, 1390.86, 1362.40, 1318.36, 1302.31, 1249.03, 1197.08, 1175.71, 1152.72, 1113.87, 1024.44, 955.86, 871.51, 782.40, 741.15, 692.17 Isomer B: ${ }^{31} \mathrm{P}\left\{{ }^{〔} \mathrm{H}\right\}$-NMR (DME, 121.5 MHz): $\delta(\mathrm{ppm})=136.1$ $(\mathrm{s}), 116.45\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=442.2 \mathrm{~Hz}\right), 96.76\left(\mathrm{~d},{ }^{1} J_{\mathrm{P}, \mathrm{P}}=442.2 \mathrm{~Hz}\right)$.

Synthesis of 12: $\left[\mathrm{Mo}(\mathrm{Mes})(\mathrm{CO})_{3}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $11(40 \mathrm{mg}, 0.1 \mathrm{mmol})$ were placed in a 10 mL Schlenk tube. DCM (2 mL) was added and the solution was left unstirred at room temperature. Overnight orange crystals of composition $\left[\left\{\operatorname{Mo}(\mathrm{CO})_{3}(\mathbf{1 1})\right\}_{4}\right]$ were formed. The solid was filtered off and dried under reduced pressure to isolate $48 \mathrm{mg}(83 \%)$ of an orange crystalline material. The crystals formed were of suitable quality to get single crystal X-ray analysis of the solid. The product was insoluble in common deuterated organic solvents. MF: $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{MoN}_{3} \mathrm{O}_{4} \mathrm{P}_{3}$, MW: $579.39 \mathrm{~g} / \mathrm{mol}$, MP: $198{ }^{\circ} \mathrm{C}$ (dec.), EA[calc]: C, $43.53 ; \mathrm{H}, 5.57$; $\mathrm{N}, 7.25$; EA[found]: C, 43.76; H, 5.71; N, 6.99. IR[$\left.\mathrm{cm}^{-1}\right]: 2965.09,1964.90,1949.96,1897.80,1848.94,1355.65,1312.23,1250.88$, 1176.22, 1114.99, 966.47, 859.61

	9	$\mathrm{Na}_{2}\left[\mathbf{8}_{\text {Ti }}\right]$	$\mathrm{Na}\left[\mathbf{8}_{\mathrm{Hf}}\right]$	$\mathrm{Na}_{2}\left[\mathbf{1 0}_{\mathbf{H f}}\right]$
CCDC	CCDC 1494722	CCDC 1494723	CCDC 1494718	CCDC 1494720
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{MoN}_{3} \mathrm{O}_{7} \mathrm{P}{ }_{6} \mathrm{Ti}$	$\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{88} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{18} \mathrm{P} \\ & { }_{12} \mathrm{Ti} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{60} \mathrm{H}_{84} \mathrm{HfN}_{6} \mathrm{Na}_{2} \mathrm{O}_{18} \mathrm{P} \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{68} \mathrm{H}_{88} \mathrm{Cl}_{3.92} \mathrm{HfMo} \\ & { }_{2} \mathrm{~N}_{6} \mathrm{Na}_{2} \mathrm{O}_{24} \mathrm{P}_{12} \end{aligned}$
Formula weight	869.19	1812.70	1773.44	2300.25
Temperature/K	100	99.55	293(2)	104(2)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 2_{1} / \mathrm{n}$	P-1
a/Å	11.0367(3)	12.9086(7)	15.9451(3)	13.1135(3)
b / \AA ¢	19.6039(7)	24.9553(13)	13.2815(2)	13.1212(4)
c/Å	15.6787(6)	13.7959(7)	18.8611(5)	16.9409(4)
$\alpha /{ }^{\circ}$	90	90	90.00	83.345(2)
$\beta /{ }^{\circ}$	93.440(3)	108.1170(10)	90.052(3)	68.758(2)

X-RAY TABLES

Table S1: Crystal data and structure refinement.

	5	$\mathrm{Na}[3]$	Na [6]	7	7
CCDC	CCDC 1494719	CCDC 1494721	CCDC 1494716	CCDC 1494717	CCDC 1494802
Empirical formula	$\begin{aligned} & \mathrm{C}_{39} \mathrm{H}_{41} \mathrm{MoN}_{3} \mathrm{O}_{9} \\ & \mathrm{P}_{6} \mathrm{Si} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{36.46} \mathrm{H}_{44.9} \mathrm{BN}_{3} \mathrm{~N} \\ & \mathrm{aO}_{7.4} \mathrm{P}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{55} \mathrm{H}_{73} \mathrm{BMoN}_{3} \mathrm{~N} \\ & \mathrm{aO}_{16} \mathrm{P}_{6} \end{aligned}$	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}_{6} \mathrm{Ti}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P} \\ & { }_{6} \mathrm{Ti} \end{aligned}$
Formula weight	1005.60	863.20	1347.72	709.25	702.04
Temperature/K	106.48(14)	106(9)	107(6)	104.7(10)	104.6(2)
Crystal system	orthorhombic	orthorhombic	monoclinic	orthorhombic	monoclinic
Space group	Pbca	Pna2 ${ }_{1}$	$\mathrm{P} 2_{1} / \mathrm{n}$	$\mathrm{P} 2_{1} 2_{1} 2_{1}$	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	28.4804(10)	33.7644(14)	12.9566(4)	13.1587(2)	7.4263(3)
b/Å	18.1858(6)	12.0728(6)	29.5914(8)	20.1174(3)	$15.2635(8)$
c / \AA	16.8840(4)	$11.6209(5)$	16.6475(5)	24.1036(4)	26.3095(15)
$\alpha /{ }^{\circ}$	90	90	90	90	90
$\beta /{ }^{\circ}$	90	90	90.824(3)	90	92.364(4)
$\gamma^{/ 0}$	90	90	90	90	90
Volume/ \AA^{3}	8744.9(5)	4737.1(4)	6382.1(3)	6380.68(17)	2979.7(3)
Z	8	4	4	8	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.528	1.210	1.403	1.477	1.565
μ / mm^{-1}	0.603	0.281	0.429	0.606	0.822
$\mathrm{F}(000)$	4112.0	1799.0	2800.0	2896.0	1416.0
Reflections collected	47716	34644	43016	30300	26042
Independent reflections	6938	9513	14875	15821	12040
$\mathrm{R}_{\text {int }}$	0.1278	0.1077	0.0653	0.0300	0.0526
$\mathrm{R}_{\text {sigma }}$	0.0823	0.0965	0.0988	0.0599	0.0806
Data/restraints/para meters	6938/0/532	9513/61/436	14875/0/748	15821/0/777	12040/0/352
GOF	1.335	1.059	1.060	1.048	1.068
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})$]	0.0972	0.1122	0.0740	0.0521	0.0671
$\mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1556	0.2802	0.1282	0.1083	0.1633
Largest diff. peak/hole / e \AA^{-3}	0.92/-0.74	0.73/-0.65	0.68/-0.50	1.50/-0.40	1.33/-1.58

$\gamma /{ }^{\circ}$	90	90	90.00	$60.501(3)$
Volume $/ \AA^{3}$	$3386.17(19)$	$4223.9(4)$	$3994.33(14)$	$2357.64(12)$
Z	4	2	2	1
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.705	1.425	1.475	1.620
μ / mm^{-1}	0.941	0.530	1.622	1.754
$\mathrm{~F}(000)$	1744.0	1876.0	1808.0	1154.0
Reflections collected	25661	50291	13164	38086
Independent	10325	8349	7328	13365
reflections	0.0676	0.0748	0.0365	0.0236
$\mathrm{R}_{\text {int }}$	0.1100	0.0781	0.0629	0.0285
$\mathrm{R}_{\text {sigma }}$	$10325 / 102 / 449$	$8349 / 0 / 481$	$7328 / 0 / 454$	$13365 / 534 / 564$
Data/restraints/para				
meters	0.976	0.906	1.032	1.032
GOF	0.0563,	0.0374	0.0415	0.0230
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0825	$0.54 /-0.37$	$0.61 /-0.51$	0.0529
wR $2[\mathrm{I}>2 \sigma(\mathrm{I})]$	$1.47 /-0.76$			$0.66 /-0.55$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$				

	$\mathbf{4}$	$\mathbf{1 1}$	$\mathbf{1 2}$
CCDC	CCDC 1495123	CCDC 1495143	CCDC 1495146
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{7}$	$\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{OP}_{3}$	$\mathrm{C}_{22.5} \mathrm{H}_{34.4} \mathrm{Cl}_{2.71} \mathrm{Mo}$
			$\mathrm{N}_{3} \mathrm{O}_{4} \mathrm{P}_{3}$
Formula weight	959.71	399.37	695.90
Temperature/K	$105(1)$	$104.79(12)$	$106.05(13)$
Crystal system	triclinic	orthorhombic	orthorhombic
Space group	$\mathrm{P}-1$	Pbca	Fdd 2
a / \AA	$8.6804(3)$	$12.9301(4)$	$59.1004(11)$
b / \AA	$11.7969(5)$	$11.3677(4)$	$34.6994(6)$
c / \AA	$12.7633(5)$	$29.4791(17)$	$12.38327(19)$
$\alpha /{ }^{\circ}$	$112.956(4)$	90	90
$\beta /{ }^{\circ}$	$104.532(3)$	90	90
$\gamma /{ }^{\circ}$	$93.858(3)$	90	90
Volume $/ \AA^{3}$	$1144.80(9)$	$4333.0(3)$	$25394.9(8)$
Z	1	8	32
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	1.392	1.224	1.456
μ / mm^{-1}	0.318	0.286	0.824
$\mathrm{~F}(000)$	501.0	1712.0	11376.0
Reflections	12458	14270	32415
collected			
Independent	4678	5923	12027
reflections			
$\mathrm{R}_{\text {int }}$	0.0325	0.0210	0.0374
$\mathrm{R}_{\text {sigma }}$	0.0458	0.0312	0.0436
Data/restraints/para	$4678 / 0 / 329$	$5923 / 0 / 234$	$12027 / 1 / 671$
meters			
GOF	1.180	1.113	1.093
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0589	0.0396	0.0487
$\mathrm{R}_{1}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1087	0.0844	0.1120
Largest diff.	$0.47 /-0.65$	$0.44 /-0.30$	$0.91 /-0.80$
peak/hole $/ \mathrm{e} \AA \AA^{-3}$			

Calculation Details HOMO LUMO Representations

$\left[\mathrm{Ti}(\mathbf{1})_{6}\right]^{2-}$			
-2 1			
C	-3.17872705	-3.27975595	-3.07012544
N	-1.98736405	-2.81607730	-2.48659605
C	-0.77150802	-3.43472743	-2.74498833
C	-0.69697342	-4.49855392	-3.58935297
C	-1.87583348	-4.99654223	-4.21681066
C	-3.07659677	-4.39027869	-3.94797299
C	-2.06626796	-1.71285505	-1.62458961
O	-0.94397979	-1.29683356	-1.12640616
Ti	-0.00002069	-0.00006187	-0.00001213
O	-0.65606525	1.46490913	-1.12480306
C	-0.45700619	2.64375346	-1.62614937
N	-1.45499065	3.12486424	-2.48576115
C	-1.26318188	4.38715683	-3.07279223
C	-2.27895798	4.85157182	-3.94848793
C	-3.40518675	4.11396913	-4.21158306
C	-3.56111486	2.84566503	-3.58029031
C	-2.59951402	2.38042926	-2.73819384
P	0.20639447	5.25860549	-2.66625870
P	0.92311372	3.71131775	-1.35504465
P	-4.66653192	-2.44322627	-2.65661500
P	-3.67969147	-1.05121481	-1.34686219
O	0.94389758	1.29675647	1.12633147
C	2.06614963	1.71284268	1.62452715
N	1.98714737	2.81609354	2.48647925
C	0.77126748	3.43478903	2.74464659
C	0.69662812	4.49862172	3.58899262
C	1.87539706	4.99656267	4.21666010
C	3.07618675	4.39025740	3.94803232
C	3.17842798	3.27972986	3.07020315
P	4.66628480	2.44320481	2.65686578
P	3.67956580	1.05102436	1.34719948
O	1.59200811	-0.16551849	-1.13094238
C	2.51250472	-0.92830695	-1.63269650
N	3.42756171	-0.30629477	-2.49401534
C	3.35582302	1.05681274	-2.74802378
C	4.23874356	1.65525962	-3.59212065
C	5.25790197	0.88462865	-4.22367034
C	5.33295820	-0.45925166	-3.95900361
C	4.42333039	-1.10504281	-3.08156913
P	4.44252209	-2.81299313	-2.67311452
P	2.74590907	-2.65724542	-1.36003055
O	0.65601854	-1.46505239	1.12476809
C	0.45690761	-2.64387825	1.62614279
N	1.45501719	-3.12510372	2.48553114
C	1.26324563	-4.38742713	3.07250691
C	2.27916451	-4.85195909	3.94797493
C	3.40549200	-4.11444241	4.21089490
C	3.56138843	-2.84611930	3.57962945
C	2.59965073	-2.38076924	2.73775305
P	-0.20640264	-5.25881290	2.66609628
P	-0.92333727	-3.71133524	1.35522188
O	-1.59202083	0.16546260	1.13096168
C	-2.51241214	0.92836074	1.63274122
N	-3.42750290	0.30651560	2.49414707
C	-3.35599207	-1.05660474	2.74815331
C	-4.23894222	-1.65488830	3.59233647
C	-5.25789220	-0.88406753	4.22398959
C	-5.33271303	0.45982986	3.95934635
C	-4.42305204	1.10545326	3.08182140
P	-4.44194710	2.81341667	2.67341436
P	-2.74538500	2.65739313	1.36029779

H	2.56709881	1.57970046	-2.22604180
H	-0.27290103	4.95353972	3.76228938
H	4.44071625	-2.23354181	3.74842795
H	2.12713378	-5.82662358	4.40369743
H	5.96582222	1.35873895	-4.89826773
H	3.99803923	4.74509744	4.40085228
H	-0.07748492	3.01286205	2.22544396
H	6.10006968	-1.07934530	-4.41484793
H	1.82057307	5.84661161	4.89151836
H	2.65648217	-1.43594477	2.21612338
H	4.14824518	2.72287847	-3.76231797
H	4.17145053	-4.49027930	4.88400104
H	-2.56741476	-1.57963643	2.22609381
H	0.27254573	-4.95342320	-3.76283697
H	-4.44036178	2.23301432	-3.74924183
H	-2.12688693	5.82620627	-4.40426225
H	-5.96583773	-1.35804770	4.89865230
H	-3.99851042	-4.74513059	-4.40065903
H	0.07732261	-3.01275235	-2.22595818
H	-6.09965702	1.08006688	4.41527717
H	-1.82109223	-5.84657107	-4.89170101
H	-2.65637579	1.43562676	-2.21653432
H	-4.14863061	-2.72252487	3.76252079
H	-4.17103091	4.48971120	-4.88487213

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	2.0369 eV	608.70 nm	$\mathrm{f}=0.0003$
$<S^{* *} 2>=0.000$					
$266->269$		0.37478			
266 -> 270		-0.28409			
267 -> 269		0.39501			
267 -> 270		0.32958			
Excited State	2 :	Singlet-A	2.0385 eV	608.21 nm	$\mathrm{f}=0.0052$
$<$ S**2>=0.000					
$266->268$		0.35938			
266 -> 269		-0.29106			
266 -> 270		0.30477			
267 -> 268		0.23344			
267 -> 269		0.26457			
267 -> 270		0.24482			
Excited State	3:	Singlet-A	2.0387 eV	608.15 nm	$\mathrm{f}=0.0052$
$<$ S**2>=0.000					
266 -> 268		-0.23391			
266 -> 269		0.23492			
266 -> 270		0.31001			
267 -> 268		0.35483			
267 -> 269		0.21632			
267 -> 270		-0.33539			
Excited State	4:	Singlet-A	2.0929 eV	592.39 nm	$\mathrm{f}=0.0155$
<S**2>=0.000					
263 -> 268		-0.27257			
266 -> 269		0.32898			
266 -> 270		0.31999			
267 -> 269		-0.31805			
267 -> 270		0.32846			
Excited State	$5:$	Singlet-A	2.1001 eV	590.37 nm	$\mathrm{f}=0.0000$
<S**2>=0.000					
264 -> 269		0.47221			
264 -> 270		-0.14875			
$265->269$		-0.14988			
265 -> 270		-0.46978			
Excited State $<S * * 2>=0.000$	$6:$	Singlet-A	2.1104 eV	587.50 nm	$\mathrm{f}=0.0826$

263 -> 269		0.28719			
266 -> 268		-0.23750			
266 -> 269		-0.17030			
266 -> 270		-0.21764			
267 -> 268		0.44184			
267 -> 269		-0.21653			
267 -> 270		0.17013			
Excited State	$7:$	Singlet-A	2.1106 eV	587.45 nm	$\mathrm{f}=0.0826$
$<$ S**2>=0.000					
263 -> 270		-0.28690			
$266->268$		0.44217			
$266->269$		0.21710			
266 -> 270		-0.17248			
267 -> 268		0.23711			
267 -> 269		-0.16878			
267 -> 270		-0.21673			
Excited State	8 :	Singlet-A	2.1133 eV	586.70 nm	$\mathrm{f}=0.0000$
$<$ S**2>=0.000					
264 -> 269		-0.23896			
264 -> 270		-0.11747			
$265->268$		0.57964			
265 -> 269		0.11804			
265 -> 270		-0.24529			
Excited State	9:	Singlet-A	2.1135 eV	586.64 nm	$\mathrm{f}=0.0000$
<S**2>=0.000					
264 -> 268		0.57862			
264 -> 269		-0.11622			
264 -> 270		0.24145			
265 -> 269		-0.24520			
265 -> 270		-0.11973			
Excited State	10:	Singlet-A	2.1826 eV	568.07 nm	$\mathrm{f}=0.0000$
<S**2>=0.000					
262 -> 269		0.24324			
264 -> 268		0.14503			
264 -> 269		0.39991			
265 -> 268		0.29644			
265 -> 270		0.39736			
Excited State	11:	Singlet-A	2.1828 eV	568.00 nm	$\mathrm{f}=0.0000$
$<S^{* *} 2>=0.000$					
262 -> 270		0.24330			
264 -> 268		0.29830			
264 -> 270		-0.39454			
265 -> 268		-0.14492			
265 -> 269		0.40149			
Excited State	12:	Singlet-A	2.2083 eV	561.46 nm	$\mathrm{f}=0.0000$
$<S^{* *} 2>=0.000$					
262 -> 268		0.38753			
264 -> 269		0.13847			
264 -> 270		0.39183			
265 -> 269		0.38211			
265 -> 270		-0.14045			
Excited State	13:	Singlet-A	2.2663 eV	547.07 nm	$\mathrm{f}=0.1377$
$<$ S**2>=0.000					
263 -> 269		0.61856			
263 -> 270		-0.13232			
266 -> 269		0.10249			
267 -> 268		-0.21596			
267 -> 270		-0.10799			
Excited State	14:	Singlet-A	2.2669 eV	546.92 nm	$\mathrm{f}=0.1381$
<S**2>=0.000					
263 -> 269		0.13264			

$\left[\mathrm{CpTi}(1)_{3}\right]$


```
Excited State 3:
<S**2>=0.000
    154 ->158
    155 ->159
    156 ->157
    156 ->158
    156 ->158
Excited State 4:
            Singlet-A
                            2.5305 eV 489.97 nm f=0.0434
<S**2>=0.000
    154 ->158
        155 ->157
    155 ->158
        156 ->157 -0.15463
    156 ->159
    Excited State 5:
Excited Sta
    154 ->157
    154 ->158
    154 ->159
    155 ->157
        155 ->159
        156 ->157
        156 ->158
    156 ->159
    Excited State 6:
<S**2>=0.000
    154 ->157
        155 ->158
        155 ->159
        156 ->157
        156 ->158
    156 ->159
    Excited State 7:
Excited Sta
    154 ->158 0.57395
    155 ->157 0.13331
    155->158 -0.13796
        155 ->159 0.17734
        156 ->157 0.20198
        156 ->158
    156 ->159
    Excited State 8:
8: Singlet-A
    2.6720 eV 464.02 nm f=0.1742
<S**2>=0.000
    154 ->159 0.63496
    155 ->157 0.16193
    155->159 0.10364
    -r ->158 -0.14717
    3:
        Singlet-A
        2.4817 eV 499.60 nm f=0.0543
        Singlet-A
        3: Singlet-A
        3: Singlet-A
        Singlet-A
            Single
            Single
        155 ->158 0.36221
            Singlet
            Singlet
            Singlet-A
                                    2.5476 eV 486.66 nm f=0.0609
        5:
        0.12482
        0.12482
        0.12482
        0.12482
        0.12482
        0.12482
        0.12482
        0.12482
    4:
            Singlet-A
                                    2.6093 eV 475.17 nm f=0.0293
        6: S
            0.41988
        -0.34074
        -0.29028
        0.11304
        -0.10100
            0.28622
\[
\begin{array}{r}
0.41988 \\
-0.34074 \\
-0.29028 \\
0.11304 \\
-0.10100 \\
0.28622
\end{array}
\]
            Singlet-A
    2.6720 eV 464.02 nm f=0.1742
        0.57395
        0.13331
        -0.13796
        0.17734
        0.20198
        -0.12002
        -0.12002
8:
0.63496
0.16193
0.10364
-0.14717
```



```
        0.22782
            2.5476 ev 486.66 nm I=0.0609
        A
```

```
    -
                            &)
                            2.5305 eV 489.97 nm f=0.0434
A
                            ~
```



```
-0.
0.57395
0.13331
-0.13796
0.17734
0.20198
-0.12002
-0.16667
```



```
                O-N+N
                                A
```


 \(\square\)
 (

