Supporting information

for

Bis-cycloheptyl-fused bis(imino)pyridine-cobalt catalysts for PE wax formation: positive effects of fluoride substitution on catalytic performance and thermal stability

Qiuyue Zhang,^{†,‡} Ningning Wu,[†] Junfeng Xiang,[†] Gregory A. Solan,^{*,†,§} Hongyi Suo,^{†,‡} Yanping Ma,^{*,†} Tongling Liang[†] and Wen-Hua Sun^{*,†,‡,#}

[†] Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail. whsun@iccas.ac.cn; Fax: +86-10-62618239; Tel: +86-10-62557955.

^{*} CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China.

[§] Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk. Tel: +44-116-2522096.

[#] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Table of Contents

- 1. NMR data for the anilines, A1 A7
- 2. **Figure S1** ¹⁹F NMR spectra of **Co1**, **Co2**, **Co3**, **Co4**, **Co6** and **Co7**; recorded S6 in CDCl₃ at ambient temperature.
- 3. Figure S2 (a) GPC traces for the polymers obtained using Co5/MMAO at S6 various temperatures; (b) Plot of activity and M_w versus temperature for the catalyst and polyethylene, respectively (entries 1 6, Table 4).
- 4. Figure S3 (a) GPC traces for the polymers obtained using Co5/MMAO at S7 various Al:Co molar ratios; (b) Plot of activity and M_w versus Al:Co molar ratio for the catalyst and polyethylene, respectively (entries 4, 7 10, Table 4).
- 5. Figure S4 (a) GPC traces for the polymers obtained using Co5/MMAO at S7 various run imes; (b) Plot of activity and M_w versus time for the catalyst and polyethylene, respectively (entries 4, 11 14, Table 4).
- 6. Figure S5 Comparison of the catalytic activities and molecular weight of the S7 polyethylenes generated using Co1 Co7 and Co_{mes} ; MMAO used as co-catalyst in each case.
- 7. **Figure S6** ¹H NMR spectrum of the polyethylene obtained using Co4/MAO at S8 60 °C; recorded at 100 °C in 1,1,2,2-tetrachloroethane- d_2 (entry 5, Table 3).
- 8. **Figure S7** ¹H NMR spectrum of the polyethylene obtained using **Co5'**/MAO S8 at 60 °C; recorded at 100 °C in 1,1,2,2-tetrachloroethane- d_2 (entry 7, Table 3).
- 9. Table S1 Crystal data and structure refinements for Co4, Co5, Co5' and S9 Co5''.
- 10. References

S10

S2

NMR data for the anilines, A1 – A7

Compounds A1 – A7 were synthesized based on related literature procedures.¹

Compound A1. ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.98–6.88 (m, 16H), 6.74 (s, 1H, aryl-H), 6.08 (s, 1H, aryl-H), 5.39 (s, 1H, CH(*p*-FPh)₂), 5.27 (s, 1H, CH(*p*-FPh)₂), 3.42 (s, 2H, NH₂), 2.12 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃, TMS): δ 163.08, 162.74, 160.64, 160.31, 140.90, 140.30, 140.27, 138.22, 138.19, 133.05, 130.93, 130.86, 130.75, 130.67, 129.93, 129.14, 128.15, 122.92, 115.69, 115.48, 115.22, 115.01, 54.70, 51.03, 18.00.

2-Ethyl-4,6-bis{di(p-fluorophenyl)methyl}aniline (A2, Yield: 73%)

Compound A2. ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.99–6.88 (m, 16H), 6.77 (s, 1H, aryl-H), 6.07 (s, 1H, aryl-H), 5.41 (s, 1H, CH(*p*-FPh)₂), 5.30 (s, 1H, CH(*p*-FPh)₂), 3.46 (s, 2H, NH₂), 2.47 (q, J = 8 Hz, 2H, CH₂CH₃), 1.19 (t, J = 8 Hz, 3H, CH₂CH₃). ¹³C NMR (100 MHz,

CDCl₃, TMS): δ 163.08, 162.74, 160.64, 160.30, 140.38, 140.35, 140.32, 138.30, 138.27, 133.13, 130.94, 130.87, 130.75, 130.67, 128.98, 128.66, 128.42, 127.84, 115.68, 115.47, 115.20, 114.99, 54.87, 51.08, 24.53, 13.22.

2-Isopropyl-4,6-bis{di(*p*-fluorophenyl)methyl}aniline (A3, Yield: 82%)

Compound A3. ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.95–6.86 (m, 16H), 6.82 (s, 1H, aryl-H), 6.01 (s, 1H, aryl-H), 5.39 (s, 1H, CH(*p*-FPh)₂), 5.28 (s, 1H, CH(*p*-FPh)₂), 3.47 (s, 2H, NH₂), 2.82 (m, 1H, CH(CH₃)₂), 1.17 (d, J = 4 Hz, 6H, CH(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃, TMS): δ 163.09, 162.74, 160.65, 160.31, 140.46, 139.64, 138.34, 133.21, 133.07, 130.97, 130.89, 130.75, 130.67, 128.70, 128.64, 124.95, 115.67, 115.46, 115.18, 114.97, 54.98, 51.23, 28.13, 22.59.

2-Chloro-4,6-bis{di(*p*-fluorophenyl)methyl}aniline (A4, Yield: 65%)

Compound A4. ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.96–6.91 (m, 17H), 6.13 (s, 1H), 5.37 (s, 1H, CH(*p*-FPh)₂), 5.26 (s, 1H, CH(*p*-FPh)₂), 3.87 (s, 2H, NH₂). ¹³C NMR (100 MHz, CDCl₃, TMS): δ 163.23, 162.90, 160.79, 160.46, 139.54, 139.44, 137.41, 133.93, 130.89, 130.81, 130.72, 130.65, 129.96, 129.74, 128.42, 120.64, 115.91, 115.70, 115.44, 115.23, 54.40, 51.37.

Compound **A5**. ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.97–6.91 (m, 16H), 6.65 (d, J = 6 Hz, 1H), 6.03 (s, 1H, aryl-F), 5.40 (s, 1H, CH(*p*-FPh)₂), 5.26 (s, 1H, CH(*p*-FPh)₂), 3.46 (s, 2H, NH₂). ¹³C NMR (100 MHz, CDCl₃, TMS): δ 163.20, 162.90, 160.76, 160.46, 153.49, 151.11, 131.05, 130.87, 130.79, 130.74, 130.66, 115.87, 115.65, 115.42, 115.21, 114.51, 114.31, 54.53, 50.80, 50.77.

2,6-Dimethyl-4-{di(*p*-fluorophenyl)methyl}aniline (A6, Yield:69%)

Compound A6. ¹H NMR (400 MHz, CDCl₃, TMS): *δ* 7.07–6.95 (m, 8H), 6.66 (s, 2H, aryl-

H), 5.38 (s, 1H, CH(*p*-FPh)₂), 3.54 (s, 2H, NH₂), 2.14 (s, 6H, $2 \times$ CH₃). ¹³C NMR (100 MHz, CDCl₃, TMS): δ 162.79, 160.36, 141.45, 140.52, 133.15, 130.95, 130.87, 129.27, 121.95, 115.31, 115.10, 54.86, 17.93.

Compound A7. ¹H NMR (400 MHz, CDCl₃, TMS): *δ* 7.08–6.97 (m, 8H), 6.84 (s, 1H, aryl-H), 6.28 (s, 1H, aryl-H), 5.44 (s, 1H, CH(*p*-FPh)₂), 3.32 (s, 2H, NH₂), 2.15 (s, 3H, CH₃), 2.13 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃, TMS): *δ* 163.10, 160.67, 139.92, 138.63, 138.60, 131.14, 131.06, 129.98, 128.40, 128.37, 127.33, 123.06, 115.74, 115.52, 51.04, 20.86, 17.87.

(b) ¹⁹F NMR spectroscopic data for A1 - A7

A1: ¹⁹F NMR (470 MHz, CDCl₃): δ –115.98, –117.08.

A2: ¹⁹F NMR (470 MHz, CDCl₃): δ –116.01, –117.12. A3: ¹⁹F NMR (470 MHz, CDCl₃): δ –116.11, –117.23. A4: ¹⁹F NMR (470 MHz, CDCl₃): δ –115.36, –115.37, –116.47, –116.48. A5: ¹⁹F NMR (470 MHz, CDCl₃): δ –115.56, –115.58, –134.72. A6: ¹⁹F NMR (470 MHz, CDCl₃): δ –117.08. A7: ¹⁹F NMR (470 MHz, CDCl₃): δ –116.16.

Figure S1. ¹⁹F NMR spectra of Co1, Co2, Co3, Co4, Co6 and Co7; recorded in CDCl₃ at ambient temperature.

Figure S2. (a) GPC traces for the polymers obtained using Co5/MMAO at various temperatures; (b) Plot of activity and M_w versus temperature for the catalyst and polyethylene, respectively (entries 1 - 6, Table 4).

Figure S3. (a) GPC traces for the polymers obtained using Co5/MMAO at various Al:Co molar ratios; (b) Plot of activity and M_w versus Al:Co molar ratio for the catalyst and polyethylene, respectively (entries 4, 7 – 10, Table 4).

Figure S4. (a) GPC traces for the polymers obtained using Co5/MMAO at various times; (b) Plot of activity and M_w versus time for the catalyst and polyethylene, respectively (entries 4, 11 - 14, Table 4).

Figure S5. Comparison of the catalytic activities and molecular weight of the polyethylenes generated using Co1 - Co7 and Co_{mes} ; MMAO used as co-catalyst in each case.

Figure S6. ¹H NMR spectrum of the polyethylene obtained using Co4/MAO at 60 °C; recorded at 100 °C in 1,1,2,2-tetrachloroethane- d_2 (entry 5, Table 3).

Figure S7. ¹H NMR spectrum of the polyethylene obtained using Co5'/MAO at 60 °C; recorded at 100 °C in 1,1,2,2-tetrachloroethane- d_2 (entry 7, Table 3).

	Co4	Co5	Co5'	Co5''
CCDC Number	1998230	1998231	1998232	1998233
Empirical formula	$2(C_{79}H_{57}C_{14}CoF_8N_3)$	$\begin{array}{c} 2(C_{79}H_{57}Cl_2CoF_{10}N_3) \\ \cdot C_4H_{10}O \end{array}$	$C_{81}H_{60}ClCoF_{10}N_3O_2$	$\begin{array}{c} C_{79}H_{65}Cl_2CoF_2N_3\cdot\\ C_4H_8O\cdot CH_2Cl_2\end{array}$
Formula weight	2802.01	2810.32	1391.70	1381.20
Temperature/K	169.99(10)	169.99(12)	169.99(11)	169.99(12)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	P-1
a/Å	16.65280(10)	15.6079(2)	18.5816(3)	10.4294(4)
b/Å	25.4947(2)	28.3387(4)	27.4361(2)	18.2182(7)
c/Å	35.8638(2)	33.8316(5)	16.5226(3)	20.3353(7)
$\alpha/^{\circ}$	90	90	90	65.813(4)
β/°	97.8590(10)	92.5730(10)	116.265(2)	76.760(4)
γ/°	90	90	90	81.879(3)
Volume/Å ³	15083.25(17)	14948.9(4)	7553.7(2)	3426.0(2)
Ζ	4	4	4	2
$\rho_{calc}g/cm^3$	1.234	1.249	1.224	1.339
μ/mm^{-1}	3.607	3.043	2.704	3.840
F(000)	5752.0	5792.0	2868.0	1442.0
Crystal size/mm ³	$0.225 \times 0.145 \times 0.078$	$0.38 \times 0.27 \times 0.15$	0.519 × 0.256 × 0.089	$0.25 \times 0.15 \times 0.05$
2Θ range for data collection/°	CuKa (λ = 1.54184)	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	CuKα (λ = 1.54184)
Index ranges	4.974 to 151.166	5.23 to 151.272	5.304 to 151.278	4.852 to 151.946
Reflections collected	$\begin{array}{l} \text{-20} \leq h \leq 20, \text{-31} \leq k \\ \leq 27, \text{-44} \leq l \leq 44 \end{array}$	$-19 \le h \le 19, -35 \le k \le 34, \\ -36 \le l \le 42$	$-19 \le h \le 21, -34 \le k$ $\le 34, -20 \le l \le 20$	$\begin{array}{l} \textbf{-12} \leq h \leq 13, \textbf{-22} \leq \\ k \leq 22, \textbf{-25} \leq 1 \leq \\ 24 \end{array}$
Independent reflections	108973	109151	48495	47515
Data/restraints/p arameters	30074 [$R_{int} = 0.0477$, $R_{sigma} = 0.0424$]	29571 [$R_{int} = 0.0524$, $R_{sigma} = 0.0422$]	14476 [$R_{int} = 0.0501$, $R_{sigma} = 0.0349$]	13523 [$R_{int} =$ 0.0813, $R_{sigma} =$ 0.0759]
Goodness-of-fit on F ²	30074/169/1748	29571/0/1758	14476/867/1173	13523/0/858
Final R indexes [I>=2σ (I)]	1.016	1.031	1.049	1.238
Final R indexes	$R_1 = 0.0569,$	$R_1 = 0.0919$,	$R_1 = 0.1101,$	$R_1 = 0.1134$,
[all data]	$wR_2 = 0.1476$	$wR_2 = 0.2534$	$wR_2 = 0.2728$	$wR_2 = 0.3074$
Largest diff.	$R_1 = 0.0747,$	$R_1 = 0.1127$,	$R_1 = 0.1508,$	$R_1 = 0.1370,$
peak/hole / e Å-3	$wR_2 = 0.1607$	$wR_2 = 0.2680$	$wR_2 = 0.3026$	$wR_2 = 0.3290$
Flack parameter	0.41/-0.34	1.22/-0.72	0.55/-0.39	2.16/-1.50

Table S1. Crystal data and	l structure refinements for	Co4, Co5, Co5' and Co5''
----------------------------	-----------------------------	--------------------------

References

1 (a) S. Meiries, K. Speck, B. D. Cordes, A. M. Z. Slawin and S. P. Nolan, *Organometallics*, 2013, **32**, 330–339; (b) P. Shaw, A. R. Kennedy and D. J. Nelson, *Dalton Trans.*, 2016, **45**, 11772–11780.