Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary material

Efficient way of increasing total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te_{1-x}Se_x (x = 0.0, 0.25, 0.5) superconductors

Aichi Yamashita^{a,} *, Rajveer Jha^a, Yosuke Goto^a, Tatsuma D. Matsuda^a, Yuji Aoki^a, and Yoshikazu Mizuguchi^a

^aDepartment of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan

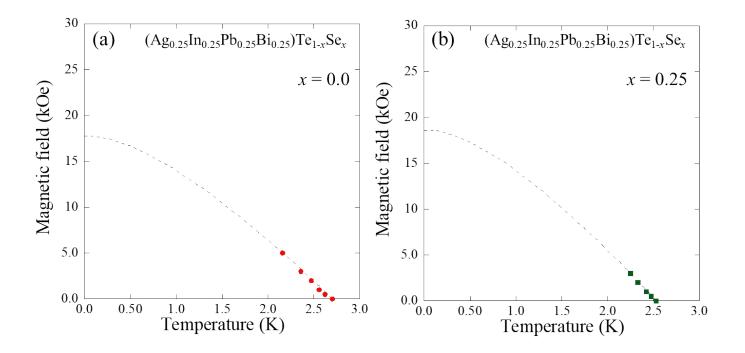


Fig. S1. Temperature dependence of H_{c2} for (a) x = 0 and (b) x = 0.25 where T_c^{onset} was estimated as the temperature where the resistivity becomes 90% of normal state resistivity at 3.0 K. The dashed lines are the WHH fitting results.

Table S1. Chemical composition, $\Delta S_{\text{mix}}/R$ (Site 1), $\Delta S_{\text{mix}}/R$ (Site 2), $\Delta S_{\text{mix}}/R$ (Total), transition temperature (T_c^{onset}), H_{c2} (0), lattice constant *a* (Å), lattice constant *c* (Å), and type of the structure of the high-entropy-alloy and/or medium-entropy-alloy superconductors.

HEA superconductor	⊿S _{mix} /R (site1)	$\Delta S_{\rm mix}/R$ (site2)	⊿S _{mix} /R (Total)	T _c (K)	H _{c2} (0) (kOe)	Lattice a (Å)	Lattice c (Å)	Structure	Reference	
(Ag _{0.24} In _{0.22} Pb _{0.27} Bi _{0.26})Te _{1.02}	1.37	0.00	1.37	2.7	18	6.237	~	Fm-3m		
(Ag _{0.29} In _{0.26} Pb _{0.22} Bi _{0.24})Te _{0.78} Se _{0.20}	1.38	0.51	1.89	2.5	19	6.176	2	Fm-3m	This work	
(Ag _{0.34} In _{0.15} Pb _{0.24} Bi _{0.29})Te _{0.65} Se _{0.34}	1.35	0.65	2.00	2.0	-	6.121		Fm-3m		
$Ag_{0.20}Cd_{0.20}Sn_{0.20}Sb_{0.15}Pb_{0.20}Te_{1.05}$	1.60	0.00	1.60	1.2		6.186	-	Fm-3m		
$Ag_{0.24}In_{0.22}Sn_{0.18}Sb_{0.14}Pb_{0.19}Te_{1.03}$	1.59	0.00	1.59	1.4	-	6.202	=	Fm-3m	Md. R. Kasem et al., Appl. Phys. Express 13 , 033001 (2020)	
$Ag_{0.22}Cd_{0.22}In_{0.23}Sn_{0.17}Sb_{0.14}Te_{1.02}$	1.59	0.00	1.59	0.7		6.098	-	Fm-3m		
$Ag_{0.19}Cd_{0.19}Sn_{0.20}Pb_{0.18}Bi_{0.21}Te_{1.03}$	1.61	0.00	1.61	1.0	-	6.244	-	Fm-3m		
$Ag_{0.21}Cd_{0.19}In_{0.25}Pb_{0.16}Bi_{0.18}Te_{1.00}$	1.60	0.00	1.60	1.0	-	6.189	-	Fm-3m		
$Ag_{0.21}Cd_{0.21}In_{0.24}Sn_{0.19}Bi_{0.19}Te_{0.97}$	1.61	0.00	1.61	1.0	2	6.136	2	Fm-3m		
$Ag_{0.20}In_{0.20}Sn_{0.22}Pb_{0.19}Bi_{0.20}Te_{0.98}$	1.61	0.00	1.61	2.8	19	6.255	-	Fm-3m	Y. Mizuguchi, J. Phys. Soc. Jpn. 88 , 124708 (2019)	
(TaNb) _{0.67} (HfZrTi) _{0.33}	1.46	-	1.46	7.7	80	3.340	2	bec	J. Guo et al., Proc. Natl. Acad. Sci. USA 114 , 13144 (2017)	
(TaNb)0.7(ZrHfTi)0.3	1.43	120	1.43	8.0	67	3.29~3.33	-	bee		
(TaNb)0.7(ZrHfTi)0.33	1.24	-	1.24	7.8	78	3.29~3.33	-	bcc		
(TaNb) _{0.7} (ZrHfTi) _{0.4}	1.31	17.0	1.31	7.6	84	3.29~3.33		bcc		
(TaNb)0.7(ZrHfTi)0.5	1.39		1.39	6.5	117	3.29~3.33	-	bcc	F. O. von Rohr et al., Phys. Rev. Mater. 2, 034801 (2018)	
(TaNb) _{0.7} (ZrHfTi) _{0.84}	1.60	-	1.60	4.5	90	3.29~3.33	-	bcc		
(TaNb) _{0.67} (Hf) _{0.33}	1.10	-	1.10	7.3	-	3.29~3.33	-	bcc		
(TaNb) _{0.67} (HfZr) _{0.33}	1.33		1.33	6.6	5	3.29~3.33	-	bcc		
Nb _{0.67} (HfZrTi) _{0.33}	1.00	-	1.00	9.2	-	3.29~3.33	-	bcc		
(NbV) _{0.67} (HfZrTi) _{0.33}	1.46	-	1.46	7.2	-	3.29~3.33	-	bcc		
(TaV) _{0.67} (HfZrTi) _{0.33}	1.46	100	1.46	4.0	ā	3.29~3.33	-	bcc		
(TaNb) _{0.67} (HfZrTi) _{0.33}	1.46	120	1.46	7.3	-	3.29~3.33	-	bcc		
(TaNbV)0.67(HfZrTi)0.33	1.73	-	1.73	4.3	-	3.29~3.33	-	bcc		
(ScZrNbTa)0.65(RhPd)0.35	1.18	0.61	1.79	9.3	107	3.278		CsC1	K. Stolze et al., Chem. Mater. 30 , 906 (2018)	
(ScZrNb) _{0.63} (RhPd) _{0.37}	1.16	0.62	1.79	7.5	96	3.278~3.29	2	CsC1		
(ScZrNb) _{0.62} (RhPd) _{0.38}	1.16	0.63	1.79	6.4	89	3.278~3.29	-	CsC1		
(ScZrNb) _{0.60} (RhPd) _{0.40}	1.14	0.64	1.78	3.9	21	3.278~3.29	-	CsC1		
Ta _{0.34} Nb _{0.33} Hf _{0.08} Zr _{0.14} Ti _{0.11}	1.45		1.45	7.3	82	3.360	-	bcc	P. Koželj et al., Phys. Rev. Lett. 113 , 107001 (2014), S. Marik et al., J. Alloys Compd. 695 , 3530 (2017)	
[Nb _{0.11} Re _{0.56}][HfZrTi] _{0.33}	0.73	0.57	1.30	4.4	36	5.255	8.593	hcp	S. Marik et al., Phys. Rev. Mater. 3, 060602 (2019)	
Hf _{0.21} Nb _{0.25} Ti _{0.15} V _{0.15} Zr _{0.24}	1.59		1.59	5.3	-	3.401	-	bcc	N. Ishizu et al., Results in Phys. 13, 102275 (2019)	
Ta _{0.35} Nb _{0.35} Zr _{0.15} Ti _{0.15}	1.30	-	1.30	8.0	116	3.329	-	bee	Y. Yuan et al., Front. Mater. 5,72 (2018)	
(ZrNb) _{0.2} (MoReRu) _{0.8}	1.52	-	1.52	4.2	-	9.701	-	bcc	K. Stolze et al., J. Mater. Chem. C 6 , 10441 (2018)	
(ZrNb) _{0.1} (MoReRu) _{0.9}	1.38		1.38	5.3	79	9.613	2	bcc		
(HfTaWIr) _{0.6} Re _{0.4}	1.50	-	1.50	1.9	-	9.778	-	bcc+hcp		
(HfTaWIr) _{0.5} Re _{0.5}	1.39	1.00	1.39	2.7	-	9.741	-	bcc+hcp		
(HfTaWIr) _{0.4} Re _{0.6}	1.23	-	1.23	4.0	47	9.723	-	bcc		
(HfTaWIr) _{0.3} Re _{0.7}		-		10000	-	9.662	-	bee		
(HfTaWIr) _{0.2} Re _{0.8}	0.78	-	0.78	5.7 2.2	-	9.638 9.726	-	bee		
(HfTaWPt) _{0.5} Re _{0.5}	1.39	-	1.39	4.4	- 59	9.726		bcc+hcp		
(HfTaWPt) _{0.4} Re _{0.6} (HfTaWPt) _{0.3} Re _{0.7}	1.23	-	1.23	4.4 5.7	- 59	9.683	-	bee bee		
(HfTaWPt) _{0.3} Re _{0.7} (HfTaWPt) _{0.25} Re _{0.75}	0.91	-	0.91	6.1	-	9.648	-	bee		
Nb _{26.1} Ta _{25.1} Ti _{23.4} Zr _{0.254}	1.39	-	1.39	8.3	- 14	3.373		bee		
Nb _{0.198} Ta _{0.189} Ti _{0.208} Zr _{0.187} Hf _{0.218}	1.59	-	1.59	7.1	20	3.405	-	bee	K. Y. Wu et al., Nat. Sci. J. 10 , 110 (2018)	
	1.01	-	1.79	5.1	20	3.357	-	bee		
Nb _{0.163} Ta _{0.157} Ti _{0.169} Zr _{0.171} Hf _{0.175} V _{0.165} Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Fe _{0.2}	1.79	-	1.79	6.9	- 20	-	-	bee		
Nb _{0.2} Ia _{0.2} II _{0.2} Zr _{0.2} Fe _{0.2} Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Ge _{0.2}	1.61	-	1.61	8.4	- 13		2	bee		
Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Ge _{0.2} Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Si _{0.2} V _{0.2}	1.61	-	1.01	4.3	- 15	-	-	bee		
Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Si _{0.2} V _{0.2} Nb _{0.2} Ta _{0.2} Ti _{0.2} Zr _{0.2} Si _{0.2} Ge _{0.2}	1.79	-	1.79	7.4	9	-	-	bee		
(Y _{0.28} Nd _{0.16} Sm _{0.18} Eu _{0.18} Gd _{0.20})Ba ₂ Cu ₃ O _{7-d}	1.79	0.00	1.79	93.0	-	3.845		Pmmm	+	
$(Y_{0.18}La_{0.24}Nd_{0.16}Sin_{0.18}Eu_{0.18}Gd_{0.20})Ba_2Cu_3O_{7-d}$ $(Y_{0.18}La_{0.24}Nd_{0.14}Sin_{0.14}Eu_{0.15}Gd_{0.15})Ba_2Cu_3O_{7-d}$	1.39	0.00	1.39	93.0	-	3.864	-	Pmmm	Y. Shukunami et al.,, Physica C 572, 1353623 (2020)	
$\frac{(1_{0.18}La_{0.2}4Wd_{0.14}Sm_{0.14}Lu_{0.13}Gd_{0.15})Ba_{2}Cu_{3}O_{7-a}}{(La_{0.2}Ce_{0.2}Pr_{0.2}Nd_{0.2}Sm_{0.2})O_{0.5}F_{0.5}BiS_{2}}$	1.61	0.69	2.30	4.3	-	4.020	13.417	P4/nmm	R. Sogabe et al., Appl. Phys. Express 11 , 053102 (2018) R. Sogabe et al., Solid State Commun. 295 , 43 (2019)	
				0.4	2	1.000	40.400	P4/nmm	2013)	
(Lan 3Cen 3Pto 2Ndo 1Stron) On sEn sBiSa	1.50	0.69	2.20	34	-	4.036	13,402			
$\frac{(La_{0.3}Ce_{0.3}Pr_{0.2}Nd_{0.1}Sm_{0.1})O_{0.5}F_{0.5}BiS_2}{(La_{0.1}Ce_{0.1}Pr_{0.3}Nd_{0.3}Sm_{0.2})O_{0.5}F_{0.5}BiS_2}$	1.50 1.50	0.69	2.20	3.4 4.7	-	4.036	13.402 13.419	P4/nmm P4/nmm	R. Sogabe et al., Appl. Phys. Express 11, 053102 (2018)	