SUPPORTING INFORMATION

Metallophilic Au(I) \cdots M(I) Interactions (M = Tl, Ag) in Heteronuclear Complexes with 1,4,7-Triazacyclononane: Structural Features and Optical Properties

R. Donamaría, V. Lippolis, J. M. López-de-Luzuriaga, M. Monge, M. Niedu, M. E. Olmos

Tl(1)-Au(1)	3.3377(6)		Au(1)-C(1)	2.056(9)
Tl(1)-Au(2)	3.5478	(6)	Au(2)-C(7)	2.039(9)
TI(1)-N(1)	2.663(8)	TI(1)-CI(10)#2	3.6366	(5)
TI(1)-N(2)	2.614(9)	TI(1)-CI(3)#4	3.6923	(5)
TI(1)-N(3)	2.671(9)			
Au(1)-Tl(1)-Au	(2)	144.29(1)	N(1)-Tl(1)-Au(1)	70.01(16)
C(1)-Au(1)-C(1	.)#1	180.0	N(3)-Tl(1)-Au(1)	126.63(17)
TI(1)-Au(1)-TI(1)#1	180.0	N(2)-Tl(1)-Au(2)	72.66(18)
C(7)-Au(2)-C(7	')#2	180.0	N(1)-Tl(1)-Au(2)	136.86(16)
Tl(1)-Au(2)-Tl(1)#2	180.0	N(3)-Tl(1)-Au(2)	89.08(17)
N(2)-Tl(1)-N(1)	65.4(2)	C(1)-Au(1)-Tl(2	1)	93.4(2)
N(2)-Tl(1)-N(3)	66.3(3)	C(1)-Au(1)-Tl(2	1)#1	86.6(2)
N(1)-TI(1)-N(3)	65.7(2)	C(7)-Au(2)-Tl(2	1)	97.2(3)
N(2)-Tl(1)-Au(1)	118.61(19)	C(7)-Au(2)-Tl(2	1)#2	82.8(3)

Table S1. Selected bond lengths [Å] and angles [°] for $\{[{Au(C_6CI_5)_2}TI(TACN)]_2\}_n$ (1)

Symmetry transformations used to generate equivalent atoms:

#1-x+1,-y+1,-z+1 #2-x+1,-y+1,-z+2 #4-x+1,-y+2,-z+1

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1)Au(1)	0.99	2.9315(4)	3.4867(4)	129.1	
C(16)-H(16A)Au(2)	0.99	3.0261(5)	3.8534(4)	141.8	
N(1)-H(1)Cl(8)#1	1.00	2.89	3.460(4)	116.9	
N(2)-H(2)Cl(5)#2	1.00	2.85	3.458(4)	119.6	
N(3)-H(3)Cl(9)#3	1.00	2.88	3.678(4)	137.3	
N(3)-H(3)Cl(10)#3	1.00	2.83	3.644(4)	138.9	
C(15)-H(15B)Cl(6)#4	0.99	2.87	3.717(5)	144.3	
C(17)-H(17A)Cl(2)#4	0.99	2.98	3.735(5)	134.3	
C(17)-H(17B)Cl(9)#3	0.99	2.95	3.738(5)	137.2	
C(18)-H(18B)Cl(8)#1	0.99	2.94	3.563(5)	122.0	

Table S2. Hydrogen bonds for $\{[{Au(C_6Cl_5)_2}TI(TACN)]_2\}_n$ (1).

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 #2 -x+1,-y+1,-z+2 #3 -x+2,-y+1,-z+ #4 -x+2,-y,-z+2

#5 -x+2,-y+1,-z+2 #6 -x+1,-y+2,-z+1 #7 x,y+1,z

Table S3. Selected bond lengths [Å] and angles [°] for [{Au(C6Cl5)2}Ag(TACN)] (3	9
--	---

Au(1	l)-Ag(1)	2.6915(4)	Ag(1)-C(1)	2.398(4)
Ag(1	L)-N(1)	2.429(4)	Au(1)-C(1)	2.081(4)
Ag(1	.)-N(2)	2.365(4)	Au(1)-C(7)	2.035(4)
Ag(1	.)-N(3)	2.386(4)		
C(1)	-Au(1)-C(7)	176.62(17)	N(2)-Ag(1)-Au(1)	129.07(10)
C(1)	-Au(1)-Ag(1)	58.68(12)	N(2)-Ag(1)-N(3)	76.05(14)
C(7)	-Au(1)-Ag(1)	124.70(13)	N(2)-Ag(1)-C(1)	160.06(15)
N(1)	-Ag(1)-Au(1)	142.92(10)	N(3)-Ag(1)-Au(1)	133.09(10)
N(1)-Ag(1)-C(1)	99.50(14)	N(3)-Ag(1)-N(1)	74.99(14)
N(1)	-Ag(1)-N(2)	74.40(14)	N(3)-Ag(1)-C(1)	121.34(14)
C(1)	-Ag(1)-Au(1)	47.83(10)		

d(D-H)	d(HA)	d(DA)	<(DHA)	
1.00	2.89	3.460(4)	116.9	
1.00	2.85	3.458(4)	119.6	
1.00	2.88	3.678(4)	137.3	
1.00	2.83	3.644(4)	138.9	
0.99	2.87	3.717(5)	144.3	
0.99	2.98	3.735(5)	134.3	
0.99	2.95	3.738(5)	137.2	
0.99	2.94	3.563(5)	122.0	
	d(D-H) 1.00 1.00 1.00 0.99 0.99 0.99 0.99	d(D-H)d(HA)1.002.891.002.851.002.881.002.830.992.870.992.980.992.950.992.94	d(D-H)d(HA)d(DA)1.002.893.460(4)1.002.853.458(4)1.002.883.678(4)1.002.833.644(4)0.992.873.717(5)0.992.983.735(5)0.992.953.738(5)0.992.943.563(5)	d(D-H)d(HA)d(DA)<(DHA)1.002.893.460(4)116.91.002.853.458(4)119.61.002.883.678(4)137.31.002.833.644(4)138.90.992.873.717(5)144.30.992.983.735(5)134.30.992.953.738(5)137.20.992.943.563(5)122.0

Table S4. Hydrogen bonds for [{Au(C₆Cl₅)₂}Ag(TACN)] (3).

Symmetry transformations used to generate equivalent atoms:

#1 x,y,z+1 #2 -x+1,-y,-z+1 #3 -x+1,-y+1,-z+1 #4 x-1,y,z

Au(1)-Ag(1)	2.7331	(9)	Au(1)-C(1)	2.087(9	9)
Au(1)-Au(2)	3.4022	(9)	Au(2)-C(7)	2.048(9	9)
Ag(1)-N(1)	2.324(8	3)	Ag(1)-C(1)#1	2.359(9	9)
Ag(1)-N(2)	2.411(8	3)	Ag(1)-F(10)#2	3.095(6	6)
Ag(1)-N(3)	2.464(8	8)			
C(1)-Au(1)-C(1)#1	178.6(5)	N(2)-Ag(1)-N(3	3)	73.2(3)
C(1)-Au(1)-Ag(1)#1	56.7(3)	N(1)-Ag(1)-Au	(1)	119.49(19)
C(1)-Au(1)-Ag(1)	124.3(3)	C(1)#1-Ag(1)-A	Au(1)	47.7(2)
C(1)#1-Au(1)-A	(1)	56.7(3)	N(2)-Ag(1)-Au	(1)	164.79(19)
Ag(1)#1-Au(1)-	Ag(1)	110.33(4)	N(3)-Ag(1)-Au	(1)	106.93(19)
C(7)-Au(2)-C(7)#1	179.0(5)	N(1)-Ag(1)-F(1	.0)#1	91.1(2)
N(1)-Ag(1)-C(1)#1	166.2(3)	C(1)#1-Ag(1)-F	(10)#1	89.3(3)
N(1)-Ag(1)-N(2	.)	75.5(3)	N(2)-Ag(1)-F(1	.0)#1	71.4(2)
C(1)#1-Ag(1)-N	I(2)	117.6(3)	N(3)-Ag(1)-F(1	.0)#1	144.2(2)
N(1)-Ag(1)-N(3)	74.8(3)	Au(1)-Ag(1)-F(10)#1	108.68(12)
C(1)#1-Ag(1)-N	I(3)	112.1(3)			

Table S5. Selected bond lengths [Å] and angles [°] for $[{Au(C_6F_5)_2}{Ag(TACN)}_2Au(C_6F_5)_2]$ (4).

Symmetry transformations used to generate equivalent atom:

#1 -x+1,y,-z+1/2 #2 -x+1,y-1,-z+1/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(15)-H(15B)Au(2)#1	0.99	2.8010(3)	3.5941(4)	137.5	
N(2)-H(2)F(3)#2	1.00	2.2239(2)	3.2209(3)	174.8	
N(3)-H(3)F(5)#1	1.00	2.56	3.172(10)	119.2	
N(3)-H(3)F(6)	1.00	2.56	3.267(10)	127.3	
C(14)-H(14B)F(2)#3	0.99	2.49	3.350(11)	144.8	
C(15)-H(15B)F(5)#4	0.99	2.53	3.226(11)	127.3	
C(17)-H(17A)F(8)#5	0.99	2.62	3.260(11)	122.3	

Table S6. Hydrogen bonds for $[{Au(C_6F_5)_2}{Ag(TACN)}_2Au(C_6F_5)_2]$ (4).

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2 #2 x+1/2,y+1/2,z #3 -x+1,-y+2,-z+1

#4 -x+1,y+1,-z+1/2 #5 x+1/2,y-1/2,z

Model 1a	TI	Au	L ₅	C ₆ Cl ₅
LUMO+6	10,2	3,84	2,31	83,44
LUMO+5	36,8	25,15	5,47	30,22
LUMO+4	33,16	18,83	1,51	46,26
LUMO+3	42,47	12,62	14,6	29,67
LUMO+2	10,7	20,59	0,79	67,7
LUMO+1	11,66	23,66	0,65	59,35
LUMO	37,35	26	4,18	32,08
НОМО	30,58	47,96	10,56	10,85
HOMO-1	23,15	40,79	13,93	22
HOMO-2	10,61	27,08	5,16	57,08
HOMO-3	1,22	2,28	0,56	95,75
HOMO-4	25,22	31,05	23,21	19,61
HOMO-5	6,37	5,89	6,88	80,64
HOMO-6	3,68	5,22	1,63	89,41
HOMO-7	1,52	19,73	1,66	74,93
HOMO-8	9,53	20,88	32,44	36,83

Table S7. Population analysis (%) for the model system 1a.

Model 3a	Au	Ag	L₅	C ₆ Cl₅
LUMO+3	24	58	1	17
LUMO+2	6	13	1	81
LUMO+1	9	12	1	78
LUMO	18	17	3	62
номо	19	33	22	26
HOMO-1	13	5	5	77
HOMO-2	1	1	0	98
HOMO-3	24	27	27	21
HOMO-4	42	20	19	19
HOMO-5	1	2	1	97
HOMO-6	17	20	12	51

Table S8. Population analysis (%) for the model system **3a.**

 Table S9. Population analysis (%) for the model system 4a

Model 4a	Au _A	Ag	L ₅	(C6F5) _A	Au _B	(C ₆ F ₅) _B
LUMO+2	1	43	1	1	54	0
LUMO+1	1	20	9	49	21	1
LUMO	3	32	4	14	45	2
НОМО	26	20	5	13	28	9
HOMO-1	9	21	12	14	6	38
HOMO-2	28	5	3	9	2	53
HOMO-3	4	26	17	9	8	36
HOMO-4	6	3	1	4	6	80

Model	exc.	λ_{calc} (nm)	f (s)	contributions
1a	$S_0 \rightarrow S_1$	363	0.2748	HOMO \rightarrow LUMO (47)
	$S_0 \rightarrow S_2$	332	0.0218	HOMO-1 \rightarrow LUMO(48)
	$S_0 \rightarrow S_4$	320	0.1297	HOMO-3 \rightarrow LUMO (27)
				HOMO-2 \rightarrow LUMO (16)
	$S_0 \rightarrow S_6$	310	0.0106	HOMO-3 \rightarrow LUMO (16)
				HOMO-2 \rightarrow LUMO (31)
	$S_0 \rightarrow S_8$	303	0.0281	HOMO \rightarrow LUMO+6 (33))
	$S_0 \rightarrow S_{14}$	286	0.0244	HOMO-7 \rightarrow LUMO (25)
	$S_0 \rightarrow S_{15}$	284	0.0754	HOMO-6 \rightarrow LUMO (25)
	$S_0 \rightarrow S_{16}$	283	0.0189	HOMO \rightarrow LUMO(+4) (19)
				HOMO \rightarrow LUMO+5 (20)
	$S_0 \rightarrow S_{17}$	282	0.0172	HOMO-3 → LUMO+2 (13)
	$S_0 \rightarrow S_{18}$	281	0.0159	HOMO-2 → LUMO+1 (23)
	$S_0 \rightarrow S_{19}$	280	0.0204	HOMO-8 → LUMO (15)

 Table S10. TD-DFT first Singlet-Singlet Excitation Calculations for model system 1a.

Table S11. TD-DFT first Singlet-Singlet Excitation Calculations for model system **3a**.

Model	exc.	$\lambda_{calc}(nm)$	f (s)	contributions
3a	$S_0 \rightarrow S_1$	319	0.0667	HOMO →LUMO (47)
	$S_0 \rightarrow S_2$	295	0.0182	HOMO-3 →LUMO(16)
				HOMO-1 →LUMO (29)
	$S_0 \rightarrow S_5$	284	0.0321	HOMO-4 →LUMO (16)
	$S_0 \rightarrow S_{12}$	259	0.0423	HOMO-6 →LUMO (13)
	$S_0 \rightarrow S_{13}$	258	0.1696	HOMO-6 →LUMO (24)
	$S_0 \rightarrow S_{14}$	257	0.0126	HOMO-2 →109 (15)
	$S_0 \rightarrow S_{16}$	255	0.0127	HOMO-4 →LUMO+2 (21)
	$S_0 \rightarrow S_{19}$	250	0.0210	HOMO-4 →LUMO+2 (15)

Model	exc.	$\lambda_{calc}(nm)$	f (s)	contributions
4a	$S_0 \rightarrow S_1$	357	0.0806	HOMO → LUMO (48)
	$S_0 \rightarrow S_2$	338	0.0841	HOMO \rightarrow LUMO+1 (48)
	$S_0 \rightarrow S_4$	302	0.039	HOMO-2 → LUMO (22)
				HOMO-1 → LUMO+1 (19)
	$S_0 \rightarrow S_5$	300	0.0278	HOMO-3 → LUMO(37)
	$S_0 \rightarrow S_6$	296	0.0147	HOMO-2 → LUMO (24)
	$S_0 \rightarrow S_9$	290	0.0106	HOMO-6 \rightarrow LUMO (18)
	$S_0 \rightarrow S_{13}$	282	0.0147	HOMO-2 → LUMO+1 (39)
	$S_0 \rightarrow S_{15}$	276	0.0185	HOMO-8 \rightarrow LUMO (18)
				HOMO-3 → LUMO+1 (19)
	$S_0 \rightarrow S_{16}$	274	0.0272	HOMO-6 → LUMO+1 (29)

 Table S12. TD-DFT first Singlet-Singlet Excitation Calculations for model system 4a.

Complex	1
Empirical formula	C ₁₈ H ₁₅ AuCl ₁₀ N ₃ Tl
Formula weight	1029.17
Temperature/K	105.24
Crystal system	Triclinic
Space group	P-1
a/Å	9.8906(14)
b/Å	10.6441(15)
c/Å	13.108(2)
α/°	86.361(5)
β/°	87.662(5)
γ/°	73.880(5)
Volume/ų	1322.7(3)
Z	2
$\rho_{calc}g/cm^3$	2.582
µ/mm ⁻¹	12.649
F(000)	946.0
Crystal size/mm ³	0.607 × 0.143 × 0.098
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.048 to 55.788
Reflections collected	26098
Independent reflections	6265 [R _{int} = 0.1112]
Data/restraints/parameters	6265/0/307
Goodness-of-fit on F ²	0.999
Final R indexes [I>=2σ (I)]	$R_1 = 0.0481$, w $R_2 = 0.1026$
Final R indexes [all data]	$R_1 = 0.0907$, w $R_2 = 0.1201$
Largest diff. peak/hole / e Å-3	3.46/-1.97

Table S13. Details of data collection and refinement for ${[{Au(C_6Cl_5)_2}Tl(TACN)]_2}_n$ (1).

Complex	3
Empirical formula	$C_{18}H_{15}AgAuCl_{10}N_3$
Formula weight	932.67
Temperature/K	109.99
Crystal system	Triclinic
Space group	P-1
a/Å	8.9202(7)
b/Å	11.8246(8)
c/Å	13.9123(11)
α/°	107.085(2)
β/°	100.045(3)
γ/°	106.406(2)
Volume/ų	1291.47(17)
Z	2
ρ _{calc} g/cm ³	2.398
µ/mm ⁻¹	7.482
F(000)	880.0
Crystal size/mm ³	0.383 × 0.104 × 0.04
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.004 to 55.84
Reflections collected	26368
Independent reflections	6159 [R _{int} = 0.0575]
Data/restraints/parameters	6159/0/299
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0308$, $wR_2 = 0.0632$
Final R indexes [all data]	$R_1 = 0.0441$, $wR_2 = 0.0682$
Largest diff. peak/hole / e Å-3	1.63/-1.77

Table S14. Details of data collection and refinement for $[{Au(C_6CI_5)_2}Ag(TACN)]$ (3).

Table S15. Details of data collection and refinement for

Compound	4
Empirical formula	C ₁₈ H ₁₅ AgAuF ₁₀ N ₃
Formula weight	768.17
Temperature/K	101.05
Crystal system	Monoclinic
Space group	C2/c
a/Å	23.744(3)
b/Å	8.6609(10)
c/Å	20.843(3)
α/°	90
β/°	109.049(5)
γ/°	90
Volume/ų	4051.5(10)
Z	8
ρ _{calc} g/cm ³	2.519
µ/mm ⁻¹	8.303
F(000)	2880.0
Crystal size/mm ³	$0.709 \times 0.107 \times 0.061$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.67 to 53.02
Reflections collected	27708
Independent reflections	4143 [R _{int} = 0.2373]
Data/restraints/parameters	4143/301/299
Goodness-of-fit on F ²	1.026
Final R indexes [I>=2σ (I)]	$R_1 = 0.0576$, $wR_2 = 0.0705$
Final R indexes [all data]	$R_1 = 0.1195$, $wR_2 = 0.0826$
Largest diff. peak/hole / e Å ⁻³	1.18/-1.19

 $[{Au(C_6F_5)_2}{Ag(TACN)}_2Au(C_6F_5)_2]$ (4).

Figure S1. Most important frontier molecular orbitals (isovalue = 0.02) for model system **1a** (L=LUMO; H=HOMO).

Figure S2. Most important frontier molecular orbitals (isovalue = 0.02) for model system **3a** (L=LUMO; H=HOMO).

Figure S3. Most important frontier molecular orbitals (isovalue = 0.02) for model system **4a** (L=LUMO; H=HOMO).