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1. General

1.1.

1.2

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

Materials and methods

Chemicals and solvents were purchased from commercial suppliers (mainly Sigma-Aldrich and
Fluorochem) and used as received, unless otherwise stated. Deoxygenated solvents (DCM,
MeOH, n-hexane and H,0) used for the synthesis of Co(Il) complexes were obtained by a
sonification under argon atmosphere (2 h), followed by a reflux under the same inert gas (4 h)
prior to use. Triethylamine and (triisopropylsilyl)acetylene were dried over calcium hydride,
distilled and stored under inert gas prior to use. Reactions accelerated with microwave irradiation
were conducted in CEM microwave 10 mL vials with the use of CEM Discover, a pressure
microwave reactor. Chromatographic purifications were carried out with preparative flash
chromatogram Isolera One from Biotage, using self-packed columns with silica gel 60 A 230-400
mesh (Merck). Celite 545 0.02 — 0.1 mm (Merck) was used as a Samplet® filler.

NMR spectroscopy

NMR solvents were purchased from Deutero GmbH (Germany) and used as received. NMR
spectra were acquired on Bruker Fourier 300 MHz, Bruker Avance IIIHD 400 MHz, and Bruker
Avance [IIHD 600 MHz spectrometers and referenced on solvent residual peaks.

IR spectroscopy

IR spectra were acquired on Thermo Fisher Nicolet iS50 FT-IR spectrometer with attenuated total
reflectance (ATR) unit.

UV-Vis spectroscopy

UV-Vis spectra were acquired on Agilent Cary 60 spectrophotometer, in quartz cuvettes with 10
mm path length.

Gas chromatography

Coupling reaction progress was monitored on gas chromatograph Bruker Scion 436-GC. For
determination of conversion, o,o,a-trifluorotoluene was used as an internal standard. Reaction
products were identified with gas chromatograph Varian 450-GC coupled to mass spectrometer
Bruker 320-MS equipped with direct insertion probe for low-volatility compounds.

ESI-MS

ESI-MS spectra were recorded on Bruker HD Impact and ABSciex QTOF 5600 spectrometer in
positive ion mode, using acetonitrile as a solvent.
Theoretical MS spectra were predicted using Mestrelab Research MNova software ver. 11.0.

Computational methods

The ground states of the cobalt complexes were optimised using Density Functional Theory
(DFT)! with B3LYP functional.? The calculations were performed using 6-311+G(d) basis set?
for H, C, N, O, Si and Br atoms, while LANL2DZ basis set with effective core pseudopotential
was applied for Co.* All calculations were carried out with Gaussian09 software package’ in PL-
Grid infrastructure.

Cyclic Voltammetry (CV)
CV measurements were performed on an Autolab PGSTAT M101. Measurements were carried
out on a classic three electrode assembly. Pt wire was used as a working electrode, Pt spiral as a

counter electrode and silver wire as a pseudo-reference electrode. The scan rate was 100 mV/s.
Potentials were calibrated by ferrocene as an internal standard. Solutions of 0.2 M
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tetrabutylammonium hexafluorophosphate in dichloromethane (HPLC grade) or THF were used
as a supporting electrolyte. The concentration 1-10-3 M of the studied compounds was used. The
solutions were deoxidised by argon bubbling prior to the measurement. The measured redox
potentials are referred to ferrocene as an internal standard.

1.9. X-ray photoelectron spectroscopy (XPS)

XPS analysis was performer on SPECS UHV system, with monochromatic source and charge
compensation. Data were processed using CasaXPS software.

2. Synthesis

2.1. Synthesis of the aldehyde

5-bromo-2-pyridinecarboxaldehyde was purchased from commercial source and used as received. 5-
[(triisopropylsilyl)ethynyl]- derivative was synthesised via Sonogashira coupling of 5-bromo-2-
pyridinecarboxaldehyde with corresponding acetylene, as follows:

- -
Cul N "|
= = Et;N =
2o U - B S NG
N, 2 /l\ Pd(PPh,)Cl, SiY

Figure S1.  Synthesis of 5-[(triisopropylsilyl)ethynyl] 2-pyridinecarboxaldehyde.

5-/(triisopropylsilyl) ethynyl] 2-pyridinecarboxaldehyde: A Schlenk flask equipped with magnetic
stirrer was loaded with 5-bromo-2-pyridinecarboxaldehyde (500 mg, 2.69 mmol, 1.0 equiv),
bis(triphenylphosphine)palladium(II) chloride (38 mg, 54 pmol, 2 mol%) and copper(l) iodide (26 mg,
134 pmol, 5 mol%). The flask was then evacuated and backfilled with argon three times. Next,
triethylamine (5 mL) and (triisopropylsilyl)acetylene (556 mg, 2.96 mmol, 1.1 equiv) were added under
argon atmosphere and the reaction vessel was closed. The mixture was heated at 70°C in an oil bath for
12 h. After reaction was complete, all volatiles were removed under reduced pressure. The residue was
dissolved in dichloromethane and filtered through silica plug. The obtained solution was concentrated
under reduced pressure to a minimal volume, adsorbed on celite and loaded into a Biotage Samplet®.
The product was purified by column chromatography using gradient elution from 100% hexanes to 50%
DCM: 50% hexanes. The fractions containing desired product were collected and concentrated under
reduced pressure, giving pure product as a colourless oil (668 mg, 2.32 mmol) with 86% yield. 'H NMR
(300 MHz, CDCl;) 6 10.06 (s, 1H), 8.81 (s, 1H), 7.90 (s, 2H), 1.15 - 1.13 (m, 21H). *C NMR (75 MHz,
MeCN-d3) 6 192.76, 153.06, 151.06, 139.95, 125.08, 120.99, 102.82, 99.82, 18.74, 11.33. ESI-MS:
Calcd for C;;7HsNNaOSi*: 310.1598 m/z; Found: [M+Na]* = 310.1598 m/z. Elem. Anal. Calcd for
C,7HsNOSI: C, 71.03; H, 8.77; N, 4.87; Found: C, 71.06; H, 8.84; N, 4.84.

2.2. Synthesis of the ligands

Ligands were synthesised by condensation of 2-aminophenol with the corresponding aldehydes in
anhydrous ethanol under mild acidic conditions (acetic acid), as follows:
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Figure S2.  General synthesis method of L1, L2 and L3 ligands.

Synthesis of L1: 2-aminophenol (10.9 mg, 0.1 mmol) and 5-bromo-2-pyridinecarboxaldehyde (18.6
mg, 0.1 mmol) were dissolved in 10 mL of anhydrous ethanol and 2 drops of glacial acetic acid were
added. The obtained orange-brown solution was stirred for 24 h at room temperature. After solvent
removal, the pure product was obtained as a brown solid in quantitative yield. "H NMR (600 MHz,
MeCN-ds) 6 8.79 (d, /= 1.9 Hz, 1H), 8.76 (s, 1H), 8.31 (d, J = 8.5 Hz, 1H), 8.08 (dd, /= 8.5, 2.1 Hz,
1H), 7.48 — 7.42 (m, 2H), 7.23 (t,J = 7.8 Hz, 1H), 7.03 — 6.85 (m, 2H). *C NMR (151 MHz, MeCN-d;)
6 158.27,154.24, 153.57, 151.68, 140.42, 136.10, 130.71, 123.80, 123.38, 121.13, 118.29, 116.50. ESI-
MS: Calcd for C;,HyBrN,NaO™: 298.9790, 300.9771 m/z; Found: [M+Na]* =298.9771, 300.9750 m/z.
Elem. Anal. Calcd for C;,HyBrN,O: C, 52.01; H, 3.27; N, 10.11; Found: C, 52.12; H, 3.38; N, 10.05.
Synthesis of L2: 2-aminophenol (10.9 mg, 0.1 mmol) and S5-[(triisopropylsilyl)ethynyl]-2-
pyridinecarboxaldehyde (28.7 mg, 0.1 mmol) were dissolved in 10 mL of anhydrous ethanol and 2 drops
of glacial acetic acid were added. The obtained red solution was stirred for 24 h at room temperature.
After solvent removal, the pure product was obtained as a red-solid in quantitative yield. "H NMR (600
MHz, MeCN-d;) 6 8.78 (s, 1H), 8.74 (d, ] = 2.0 Hz, 1H), 8.33 (d, ] =8.2 Hz, 1H), 7.91 (dd, ] =8.2, 2.1
Hz, 1H), 7.43 (dd, J = 8.0, 1.5 Hz, 1H), 7.26 — 7.19 (m, 1H), 6.95 (dd, ] = 8.1, 1.3 Hz, 1H), 6.94 — 6.89
(m, 1H), 1.20 — 1.10 (m, 22H). 3C NMR (151 MHz, MeCN-d;) 6 158.33, 154.48, 153.67, 153.22,
140.23, 136.12, 130.73, 122.40, 121.98, 121.09, 118.16, 116.49, 104.59, 97.69, 18.95, 12.02. ESI-MS:
Calcd for Cy3H30N,;NaOSi*: 401.2010 m/z; Found: [M+Na]* = 401.2026 m/z. Elem. Anal. Calcd for
C,3H30N,OSi: C, 72.97; H, 7.99; N, 7.40; Found: C, 72.99; H, 8.04; N, 7.37.

Synthesis of L3: 2-aminophenol (10.9 mg, 0.1 mmol) and 2-pyridinecarboxaldehyde (10.7 mg, 9.5 uL
0.1 mmol) were dissolved in 10 mL of anhydrous ethanol and 2 drops of glacial acetic acid were added.
The obtained orange solution was stirred for 24 h at room temperature. After solvent removal, the pure
product was obtained as an orange solid in quantitative yield. "H NMR (300 MHz, MeCN-d3) & 8.80 (s,
1H), 8.70 (d, /= 4.6 Hz, 1H), 8.35 (d, /= 7.9 Hz, 1H), 7.89 (td, /= 7.6, 1.1 Hz, 1H), 7.50 — 7.40 (m,
2H), 7.22 (td, J = 7.6, 1.5 Hz, 1H), 7.00 — 6.87 (m, 2H). '3C NMR (151 MHz, MeCN-d5) & 159.55,
155.50,153.47,150.70, 137.72, 136.44, 130.39, 126.38, 122.62, 121.08, 118.23, 116.41. ESI-MS: Calcd
for C;,H;1N,O%: 199.0866 m/z; Found: [M+H]* = 199.0869 m/z. Elem. Anal. Calcd for C,H;(N,O: C,
72.71; H, 5.09; N, 14.13; Found: C, 72.75; H, 5.17; N, 14.09.

2.3. Synthesis of Co(IlI) complexes

Although ligands L1, L2 and L3 might be isolated in pure forms, the Co(Ill) complexes were
synthesised by the subcomponent self-assembly of 2-aminophenol, with the corresponding aldehyde,
and cobalt(Il) perchlorate in DCM:MeOH mixture (1:1 v/v) under mildly basic conditions (Et;N). Free
access of air to the reaction mixture, enabled quantitative oxidation of the Co(Il) into Co(III).
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Figure §3.  Structures of Co(Ill) complexes obtained by the subcomponent self-assembly: 1, 2 and 4.

Synthesis of 1: 2-aminophenol (100 mg, 0.92 mmol) and 5-bromo-2-pyridinecarboxaldehyde (171 mg,
0.92 mmol) were dissolved in 30 mL of DCM/MeOH (1:1 v/v) and then Et;N (128 uL, 93 mg, 0.92
mmol) was added. To this mixture, a solution of cobalt(II) perchlorate hexahydrate (168 mg, 0.46 mmol)
in 10 mL of DCM/MeOH (1:1 v/v) was added dropwise under vigorous stirring. After 24 h at room
temperature, the dark red precipitate was filtered off, washed with small amount of DCM/MeOH (1:1
v/v), and dried in vacuo. Yield 277 mg, 85%. "H NMR (300 MHz, MeCN-d;) 6 9.08 (s, 1H), 8.21 (dd,
J=8.4,19 Hz, 1H), 7.98 — 7.90 (m, 3H), 7.86 (d, /= 8.4 Hz, 1H), 7.18 (t,J= 7.6 Hz, 1H), 6.80 (t, J =
7.5 Hz, 1H), 6.63 (d, J= 8.6 Hz, 1H). ESI-MS: Calcd for C,4H;sBr,CoN,4O,*: 608.8967, 610.8948 m/z;
Found: [M-ClO,]* = 608.8962, 610.8936 m/z. Elem. Anal. Calcd for Cy,H;sBr,CICoN4Og: C, 40.57; H,
2.27; N, 7.88; Found: C, 40.60; H, 2.36; N, 7.82.

Synthesis of 2: 2-aminophenol (65.5 mg, 0.6 mmol) and 5-[(triisopropylsilyl)ethynyl]-2-
pyridinecarboxaldehyde (172.5 mg, 0.6 mmol) were dissolved in 30 mL of DCM/MeOH (1:1 v/v) and
then Et;N (88.5 pL, 64.2 mg, 0.6 mmol) was added. To this mixture, a solution of cobalt(II) perchlorate
hexahydrate (109.6 mg, 0.3 mmol) in 10 mL of DCM/MeOH (1:1 v/v) was added dropwise under
vigorous stirring. After 24 h at room temperature, the dark violet solution was evaporated. The solid
obtained was suspended in n-hexane and then evaporated under reduced pressure. This process was
repeated 3 times, to remove the residual triethylamine salts giving pure product as a violet solid. Yield
210 mg, 76 %. '"H NMR (600 MHz, MeCN-d5) 6 9.16 (s, 1H), 8.04 (dd, /=8.1, 1.7 Hz, 1H), 7.96 — 7.91
(m, 2H), 7.86 (s, 1H), 7.17 (t, J= 7.6 Hz, 1H), 6.80 (t, J=7.6 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 1.08 —
1.04 (m, 21H).ESI-MS: Calcd for C4HssCoN4O,Si,": 813.3425 m/z; Found: [M-CIO,|" = 813.3447
m/z. Elem. Anal. Calcd for C4Hs3CICoN4O4Si,: C, 60.48; H, 6.40; N, 6.13; Found: C, 60.40; H, 6.55;
N, 6.14.

Synthesis of 4: 2-aminophenol (65.5 mg, 0.6 mmol) and 2-pyridine-carboxaldehyde (64.3 mg, 0.6
mmol) were dissolved in 30 mL of DCM/MeOH (1:1 v/v) and then Et;N (88.5 uL, 64.2 mg, 0.6 mmol)
was added. To this mixture, a solution of cobalt(Il) perchlorate hexahydrate (109.6 mg, 0.3 mmol) in 10
mL of DCM/MeOH (1:1 v/v) was added dropwise under vigorous stirring. After 24 h at room
temperature, the dark violet precipitate was filtered off, washed with small amount of DCM/MeOH
mixture (1:1 v/v), and dried in vacuo. Yield 116 mg, 70%. '"H NMR (600 MHz, MeCN-d5) 8 9.16 (s,
1H), 8.04 (dd, /= 8.1, 1.7 Hz, 1H), 7.96 — 7.91 (m, 2H), 7.86 (s, 1H), 7.17 (t,J=7.6 Hz, 1H), 6.80 (t, J
=7.6 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 1.08 — 1.04 (m, 21H). ESI-MS: Calcd for C4sHssCoN,O,Si,*:
453.0756 m/z; Found: [M-ClO4]* = 453.0767 m/z. Elem. Anal. Calcd for C,4H;3CICoN,4Oq: C, 52.14;
H, 3.28; N, 10.14; Found: C, 52.10; H, 3.35; N, 6.11.

2.4. Synthesis of Co(II) complexes

Although ligand L1 might be isolated in pure form, its Co(Il) complex 5 was synthesised by the
subcomponent self-assembly of 2-aminophenol, with the appropriate aldehyde, and cobalt(Il)
perchlorate in DCM:MeOH mixture (1:1 v/v) under mildly basic conditions (Et;N). To avoid the
oxidation of the central ion, the synthesis was conducted in Schlenk-type vial under argon atmosphere
using solvents deoxygenated as described in General section.
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Ca = Co(ll)

Figure S4.  Structure of complex 5.

Synthesis of 5: 2-aminophenol (109 mg, 1.0 mmol) and 5-bromo-2-pyridinecarboxaldehyde (186 mg,
1 mmol) were dissolved in 25 mL of deoxygenated DCM/MeOH (1:1 v/v) and then Et;N (139 pL, 101
mg, 0.1 mmol) was added. To this mixture, a solution of cobalt(Il) perchlorate hexahydrate (186 mg,
0.5 mmol) in 10 mL of deoxidised DCM/MeOH (1:1 v/v) was added dropwise under vigorous stirring.
After 24 h at room temperature, the solvents were evaporated, and the dark-red solid was washed 2 times
with deoxygenated n-hexane, dried, and then sonicated 2 times with deoxygenated water to remove the
triethylamine salts. The resulting dark-red solid was dried in vacuo. Yield 262 mg, 84%. '"H NMR (600
MHz, CD,Cl,) ¢ 251.16, 141.70, 62.18, 25.83, 20.80, 15.07, 9.03, 2.47. ESI-MS: Calcd for
C4H;¢Br,CoN4O,": 608.8967, 610.8948 m/z; Found: [M]" = 608.8978, 610.8960 m/z. Elem.
Anal. Calcd for Co4H6Br,CoN4O,: C, 47.17; H, 2.64; N, 9.17; Found: C, 47.23; H, 2.71; N, 9.14.

Synthesis of 3 via cascade reaction: A CEM microwave vial equipped with magnetic stirrer was loaded
with complex 1 (50 mg, 70 umol, 1.0 equiv), bis(triphenylphosphine)palladium(II) chloride (4.94 mg,
7.04 umol, 10 mol %) and copper(I) iodide (2.01 mg, 10.55 umol, 15 mol%). The vial was placed in a
bigger Schlenk flask and then evacuated and backfilled with argon three times. Subsequently, anhydrous
a,a,0-trifluorotoluene (2 mL), triethylamine (1 mL) and (triisopropylsilyl)acetylene (52.9 mg, 281
umol, 4.0 equiv) were added under argon atmosphere and the vial was closed with a cap. The reaction
vessel was placed in a microwave reactor and heated with a maximum power of 100 W, at 70°C, for 20
h. After, the reaction mixture was cooled to room temperature and diluted with 3 mL of hexanes and
then centrifuged. The precipitate obtained was washed and centrifuged four times with biphasic mixture
of 2 mL hexanes and 2 mL deionised water. The product was dried in an oven at 60°C overnight and
finally under reduced pressure to constant mass. Pure product was obtained as a purple-black solid (50
mg, 61 pmol) with 87% yield. 'H NMR (600 MHz, CD,Cl,) & 253.04, 132.91, 53.33, 25.46, 22.55,
14.72, 10.29, 2.21, 1.21, 0.11, -4.69. ESI-MS: Calcd for Cy4sHssCoN4O,Si,*: 813.3425; Found: [M]* =
813.3423. Elem. Anal. Calcd for C4;sHssCoN4O,Si,: C, 67.87; H, 7.18; N, 6.88; Found: C, 67.93; H,

7.27; N, 6.86.
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Figure S5.  Sonogashira coupling and simultaneous Glaser reduction performed on 1.
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2.5. Reduction attempts of complex 1 without alkyne additive

A CEM microwave vial equipped with magnetic stirrer was loaded with 1 (50 mg, 70 umol, 1.0 equiv),
and nothing more in case (1), anhydrous lithium iodide (10.4 mg, 77 umol, 1.1 equiv) in case (2),
copper(l) iodide (14.74 mg, 77 umol, 1.1 equiv) in case (3), and copper(l) iodide (2.01 mg, 10.55 umol,
15 mol%) with bis(triphenylphosphine)palladium(II) chloride (4.94 mg, 7.04 umol, 10 mol %) in case
(4). In all cases, the vial was placed in a bigger Schlenk flask and then evacuated and backfilled with
argon three times. Subsequently, anhydrous a,a,c-trifluorotoluene (2 mL) and triethylamine (1 mL)
were added under argon atmosphere and the vial was closed with a cap. The reaction vessel was placed
in a microwave reactor and heated with a maximum power of 100 W, at 70°C, for 20 h. After indicated
time, the reaction mixture was cooled to room temperature and diluted with 3 mL of hexanes and then
centrifuged. The precipitate obtained was washed and centrifuged four times with biphasic mixture of 2
mL hexanes and 2 mL deionised water. The product obtained was dried in an oven at 60°C overnight
and finally under reduced pressure to constant mass. IR analysis of the obtained purple-black solid
confirmed recovery of the unreacted substrate in all cases.

2.6. Reduction attempts of Co(I1I) complexes via Glaser reaction

Reduction attempt of 1: A CEM microwave vial equivuipped with magnetic stirrer was loaded with
complex 1 (50 mg, 70 umol, 1.0 equiv) and copper(I) iodide (2.01 mg, 10.55 umol, 15 mol%). The vial
was placed in a Schlenk flask and then evacuated and backfilled with argon three times. Subsequently,
anhydrous a,a,o-trifluorotoluene (2 mL), triethylamine (1 mL) and (triisopropylsilyl)acetylene (52.9
mg, 281 umol, 4.0 equiv) were added under argon atmosphere and the vial was closed with a cap. The
reaction vessel was placed in a microwave reactor and heated with a maximum power of 100 W, at 70°C,
for 20 h. After indicated time, the reaction mixture was cooled to room temperature and diluted with
3 mL of hexanes and then centrifuged. The formed precipitate was washed and centrifuged four times
with biphasic mixture of 2 mL hexanes and 2 mL of deionised water. The product obtained was dried in
an oven at 60°C overnight and finally under reduced pressure to constant mass. IR analysis of the
obtained purple-black solid confirmed recovery of the unreacted substrate.

Reduction attempt of 2: A CEM microwave vial equivuipped with magnetic stirrer was loaded with
complex 2 (64 mg, 70 umol, 1.0 equiv) and copper(I) iodide (2.01 mg, 10.55 umol, 15 mol%). The vial
was placed in a Schlenk flask and then evacuated and backfilled with argon three times. Subsequently,
anhydrous a,a,o-trifluorotoluene (2 mL), triethylamine (1 mL) and (triisopropylsilyl)acetylene (52.9
mg, 281 umol, 4.0 equiv) were added under argon atmosphere and the vial was closed with a cap. The
reaction vessel was placed in a microwave reactor and heated with a maximum power of 100 W, at 70°C,
for 20 h. After indicated time, the reaction mixture was cooled to room temperature and diluted with 3
mL of hexanes and then centrifuged. The formed precipitate was washed and centrifuged four times
with biphasic mixture of 2 mL hexanes and 2 mL of deionised water. The product obtained was dried in
an oven at 60°C overnight and finally under reduced pressure to constant mass. IR analysis of the
obtained purple-black solid confirmed recovery of the unreacted substrate.

Reduction of 2: A CEM microwave vial equipped with magnetic stirrer was loaded with complex 2 (64
mg, 70 umol, 1.0 equiv), bis(triphenylphosphine)palladium(Il) chloride (4.94 mg, 7.04 umol, 10 mol
%) and copper(l) iodide (2.01 mg, 10.55 umol, 15 mol%). The vial was placed in a Schlenk flask and
then evacuated and backfilled with argon three times. Subsequently, anhydrous a,a,a-trifluorotoluene
(2 mL), triethylamine (1 mL) and (triisopropylsilyl)acetylene (52.9 mg, 281 pumol, 4.0 equiv) were added
under argon atmosphere and the vial was closed with a cap. The reaction vessel was placed in a
microwave reactor and heated with a maximum power of 100 W, at 70°C, for 20 h. After indicated time,
the reaction mixture was cooled to room temperature and diluted with 3 mL of hexanes and then
centrifuged. The formed precipitate was washed and centrifuged four times with biphasic mixture of 2
mL hexanes and 2 mL deionised water. The product obtained was dried in an oven at 60°C overnight
and finally under reduced pressure to constant mass. Pure product was obtained as a purple-black solid
(24 mg, 29 umol) with 54% yield. '"H NMR (600 MHz, CD,Cl,) 6 253.04, 132.91, 53.33, 25.46, 22.55,
14.72,10.29, 2.21, 1.21, 0.11, -4.69. ESI-MS: Calcd for C4sHssCoN4O,Si,*: 813.3425; Found: [M]* =
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813.3423. Elem. Anal. Calcd for C4sHssCoN4O,Si,: C, 67.87; H, 7.18; N, 6.88; Found: C, 67.93; H,

7.27; N, 6.86.
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Figure $6.  Reduction of complex 2 via Glaser reaction.

Reduction attempt of complex 4: A CEM microwave vial equipped with magnetic stirrer was loaded
with complex 4 (39 mg, 70 umol, 1.0 equiv) and copper(I) iodide (2.01 mg, 10.55 pmol, 15 mol%). The
vial was placed in a Schlenk flask and then evacuated and backfilled with argon three times.
Subsequently, anhydrous o,o,a-trifluorotoluene (2 mL), triethylamine (1 mL) and
(triisopropylsilyl)acetylene (52.9 mg, 281 umol, 4.0 equiv) were added under argon atmosphere and the
vial was closed with a cap. The reaction vessel was placed in a microwave reactor chamber and heated
with a maximum power of 100 W, at 70°C, for 20 h. After that, the reaction mixture was cooled to room
temperature and diluted with 3 mL of diethyl ether and then centrifuged. The formed precipitate was
washed and centrifuged two times with biphasic mixture of 2 mL diethyl ether and 2 mL deionised water
and finally two times with 2 mL portions of diethyl ether. The product obtained was dried in an oven at
60°C overnight and finally under reduced pressure to constant mass. IR analysis of the obtained purple-
black solid confirmed recovery of the unreacted substrate.

Reduction attempt of complex 4: A CEM microwave vial equipped with magnetic stirrer was loaded
with [Co™(L3),]C104 (39 mg, 70 umol, 1.0 equiv), bis(triphenylphosphine)-palladium(IT) chloride (4.94
mg, 7.04 pmol, 10 mol %) and copper(I) iodide (2.01 mg, 10.55 pmol, 15 mol%). The vial was placed
in a Schlenk flask and then evacuated and backfilled with argon three times. Subsequently, anhydrous
o, a,0-trifluorotoluene (2 mL), triethylamine (1 mL) and (triisopropylsilyl)acetylene (52.9 mg, 281
umol, 4.0 equiv) were added under argon atmosphere and the vial was closed with a cap. The reaction
vessel was placed in a microwave reactor chamber and heated with a maximum power of 100 W, at
70°C, for 20 h. After that, the reaction mixture was cooled to room temperature and diluted with 3 mL
of diethyl ether and then centrifuged. The formed precipitate was washed and centrifuged two times
with biphasic mixture of 2 mL diethyl ether and 2 mL deionised water and finally two times with 2 mL
portions of diethyl ether. The product obtained was dried in an oven at 60°C overnight and finally under
reduced pressure to constant mass. IR analysis of the obtained purple-black solid confirmed recovery of
the unreacted substrate.



3. NMR Spectra
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Figure S7. 'H NMR (300 MHz, MeCN-d;, 298 K) spectrum of 5-[(triisopropylsilyl)ethynyl]-2-
pyridinecarboxaldehyde.
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Figure S8. 3C NMR (75 MHz, MeCN-d;, 298 K) spectrum of 5-[(triisopropylsilyl)ethynyl]-2-
pyridinecarboxaldehyde.
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Figure S9. 'H NMR (600 MHz, MeCN-d;, 298 K) spectrum of L1.
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Figure S10. '3C NMR (151 MHz, MeCN-d;, 298 K) spectrum of L1.
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Figure S11. 'H NMR (600 MHz, MeCN-d;, 298 K) spectrum of L2.
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Figure S12. 3C NMR (151 MHz, MeCN-d;, 298 K) spectrum of L2.
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Figure S13. 'H NMR (300 MHz, MeCN-d;, 298 K) spectrum of L3.
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Figure S14. '3C NMR (151 MHz, MeCN-d;, 298 K) spectrum of L3.
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Figure S15. 'H NMR (300 MHz, MeCN-d;, 298 K) spectrum of complex 1.
5.5
; N~ | N
o) N 2
(8 B R 6.0
Br . " |clog
2N (o s
N zN {7.96,6.83) {gfzo,gsaﬁ}}b 1] -
]
7.0
— - ] o o .
1 7.5 E_
{8.24,7.99} .({B 24,789} =
A @ 8.0
Q [N ]
8.5
9.0
e 0
9.5
: . . . . . . . i . ~10.0
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5
p.p.m.
Figure S16. 'H-'H COSY NMR (600 MHz, MeCN-d;, 298 K) spectrum of complex 1.
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Figure S17. '3C NMR (100 MHz, MeCN-d;, 298 K) spectrum of complex 1 (aq. time = 16 h).
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Figure S18. 'H NMR (300 MHz, MeCN-d;, 298 K) spectrum of complex 2.
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Figure S19. 3C NMR (100 MHz, MeCN-d;, 298 K) spectrum of complex 2 (aq. time = 8 h).
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Figure $20. 'H NMR (300 MHz, MeCN-ds, 298 K) spectrum of complex 4.
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Figure S21. 'H NMR (600 MHz, CD,Cl,, 298 K) spectrum of complex 5.
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Figure S22. 'H NMR (600 MHz, CD,Cl,, 298 K) spectrum of 3.
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Figure S23. 'H-'"H COSY NMR (600 MHz, CD,Cl,, 298 K) spectrum of complex 3.

Both 1 and 2 complexes have been tested for direct reduction of Co(III) metal centre by Pd(0) species.
Tris(dibenzylideneacetone) dipalladium(0) [Pd,(DBA);] was chosen as a reductant, due to its sufficient
solubility in CD;CN and tendency to exchange ligands around Pd(0) core. As shown below, the addition
of [Pd,(DBA);] to the solutions of 1 and 2 induced the Co(III) to Co(II) redox reaction only in the latter
case, proving that indeed the silylalkynyl substituents are responsible for intramolecular electron
transfer.
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Figure §24. Stacked 'H NMR spectra (400 MHz, MeCN-ds, 298 K) of 1 and 2 before and after addition
of stoichiometric amount of tris(dibenzylideneacetone) dipalladium(0) [Pd,(DBA);].The

mixture of 2 and [Pd;(DBA)s;] was found to be paramagnetic, as a result of substituent
mediated Co(111)/Co(ll) reduction.

4. IR spectra
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Figure §25. FT-IR(ATR) spectrum of complex 1.
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Figure $§26. FT-IR(ATR) spectrum of complex 5.
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Figure §27. FT-IR(ATR) spectrum of complex 3 obtained via microwave-accelerated synthesis.

Figure §28. FT-IR(ATR) spectrum of complex 3 obtained by heating in the oil bath.
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Figure S29. FT-IR(ATR) spectrum of complex 2.
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Figure $§30. FT-IR(ATR) spectrum of complex 2 after reduction reaction without palladium catalyst.
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Figure S31. FT-IR(ATR) spectrum of complex 2 after reduction reaction with palladium catalyst.

5. UV-Vis spectra
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Figure §32. UV-Vis spectra of complexes: 1, 2, 3 and 5 measured in DCM solutions at
5x10°M.
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6. Gas chromatography
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Figure §33. GC(TCD) chromatograms of Sonogashira coupling and simultaneous Glaser reduction
performed on 1. Top: reaction mixture before reaction. Bottom: reaction mixture after
cascade. Inset: EI-MS spectrum of (iPr);SiC=C-C=CSi(iPr);.
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7. ESI-MS
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Figure §34. ESI-HRMS  spectrum of  5-[(triisopropylsilyl)ethynyl] 2-pyridinecarbox-aldehyde,

prediction (left) and measurement (right, normalised).
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Figure $35. ESI-HRMS spectrum of L1, prediction (left) and measurement (right).
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Figure §36. ESI-HRMS spectrum of L2, prediction (left) and measurement (right).
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Figure $37. ESI-HRMS spectrum of L3, prediction (left) and measurement (right).
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Figure S38. ESI-HRMS spectrum of complex 1, prediction (left) and measurement (vight).
. —_
610.8948 610,5960
100.00% N&\ICL 100.00%
U.hjb-r-.\.“\N e Br
Br. .q\,
Z N i,
o @ @
6088078 512.8843
a0 = 58.00% 58.28%
EORADET 6128932 5
50.34% 51.67%
611,8986
611.8977 ITAN
27.34%
609.9005 613.8065
609,809 613,8958 18.99% 17.02%
13.94% 13.61%
ey 614,5989
1.90% 2.94%
1 1
T ¥ T ¥ T T T L T X T x T 1 I X T T T ¥ T ¥ T L T T
08 609 &10 &11 G612 613 G614 615 Bl 11 &09 &10 611 G612 613 Gl4 &l15 [
mfz (Da mfz (Da

Figure S39. ESI-HRMS spectrum of complex 5, prediction (left) and measurement (vight).

S-25



B13.3447
813.3425 100,00%
100.00% — —
N~ | e 814.3474
71.92%
Si(iPr)s 0 N 2 S
8143451 X ”‘:\
- \\. A
62.13% Ny 0 SiliPr)s
" ! ~MN
#15.5481
- - 56,85%
£15.3456 2
25.88%
816.3484
£16.3464 13.08%
7.35%  B17.3472 817.3491
1.81% 3.43%
L l
T X T o T v T T T T ) . T T ¥ T T ® T T
12 813 814 815 816 817 81 12 813 814 815 816 817 8
m/z (Da) m/z (Da)
Figure $§40. ESI-HRMS spectrum of complex 2, prediction (left) and measurement (right).
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Figure S41. ESI-HRMS spectrum of complex 3, prediction (left) and measurement (right).
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Figure §42. ESI-HRMS spectrum of complex 4, prediction (left) and measurement (right).

S-27



8. DFT calculations
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Figure $43. Shapes of the calculated molecular orbitals (HOMO, LUMO and SOMO stand for
Highest, Lowest Unoccupied and Single Occupied Molecular Orbitals) of 1, 2, 3, and 5.
iPr groups were simplified to Me in 2 and 3 in order to reduce computational cost.
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Table S1. Optimised ground state geometry of 5 (atom symbol, X, y, z Cartesian coordinates)

-2.72507 -4.43411 -1.90664
-2.54125 -3.51418 -0.89737
-1.31670 -3.26787 -0.42764
-0.19876 -3.91620 -0.93076
-0.34856 -4.86040 -1.95924
-1.61670 -5.11510 -2.44209
-4.08071 -4.61795 -2.31322
-4.97456 -3.94117 -1.62639
-6.34523 -3.84050 -1.75453
-7.16866 -4.56988 -2.62835
-8.53306 -4.33417 -2.63295
-9.07855 -3.36533 -1.76891
-8.28077 -2.63391 -0.90371
-6.88821 -2.85831 -0.86874
-6.08856 -2.20269 -0.06111
r 1.52695 -3.50039 -0.23644
-3.97604 -3.14625 2.38040
-4.33244 -3.86337 1.25878
-4.66169 -5.15255 1.36186
-4.66101 -5.80966 2.58300
-4.30232 -5.11073 3.74686
-3.95959 -3.77781 3.63739
-3.63182 -1.78279 2.13787
-3.63317 -1.41489 0.87531
-3.38954 -0.19638 0.27440
-2.94232 0.98025 0.89823
-2.75487 2.12360 0.13997
-3.01920 2.09746 -1.24280
-3.46468 0.94692 -1.87368
-3.65457 -0.23687 -1.13003
-4.05996 -1.35717 -1.68022
r-5.1719 7-7.6440 | 42.66870
0-4.2703 2-2.7178 | 1-0.35331
-1.23669 -2.52955 0.35998
0.51386 -5.37764 -2.36169
-1.76779 -5.84228 -3.23221
-4.34462 -5.27058 -3.14006
-6.73867 -5.31304 -3.29289
-9.17957 -4.89219 -3.30122
-10.1493 7-3.1858 | 8-1.78129
-8.70135 -1.88383 -0.24315
-4.93896 -5.65918 0.44609
-4.29367 -5.61001 4.70808
-3.67199 -3.21092 4.51594
-3.39200 -1.10185 2.94909
-2.74279 0.99232 1.96544
-2.40739 3.03711 0.60980
-2.87153 2.99960 -1.82869
-3.67302 0.92897 -2.93770

esfasijanijasiias]jan]jasfias]jan]iasilastjanlasflastjanfasl @] s (el [0l o] o) (olio][olP1(oleliolielleiPdieldicllolloliolioleliolr1ieliolielelieolr4(e
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Table S2. Optimised ground state geometry of 1 (atom symbol, x, y, z Cartesian coordinates)

-2.68710 -4.42957 -1.91807
-2.50139 -3.53351 -0.90540
-1.27264 -3.24700 -0.48238
-0.14551 -3.84827 -1.04499
-0.30921 -4.76863 -2.07797
-1.59462 -5.05999 -2.51642
-4.06779 -4.63904 -2.30215
-4.94649 -3.95801 -1.63230
-6.31714 -3.85101 -1.74800
-7.14664 -4.56400 -2.63744
-8.50184 -4.32183 -2.62441
-9.03972 -3.36652 -1.72911
-8.24386 -2.65735 -0.85296
-6.84901 -2.88363 -0.84156
-6.04452 -2.24091 -0.03075
r1.57319 -3.39650 -0.39211
-3.99660 -3.17213 2.40300
-4.33162 -3.89230 1.29299
-4.71703 -5.16072 1.40932
-4.78581 -5.79418 2.65131
-4.44554 -5.08128 3.79876
-4.04704 -3.75692 3.66960
-3.61343 -1.79905 2.14678
-3.62969 -1.43500 0.90104
-3.38576 -0.22324 0.28829
-2.95809 0.96663 0.91196
-2.77014 2.09264 0.14245
-3.01031 2.04347 -1.25161
-3.43121 0.88916 -1.87955
-3.63152 -0.28393 -1.11754
-4.02587 -1.40953 -1.66102
r-5.3419 2-7.6016 | 32.74414
0 -4.2402 3-2.7529 | 5-0.33444
-1.18091 -2.52221 0.31613
0.55055 -5.24625 -2.53216
-1.75285 -5.76843 -3.32118
-4.33179 -5.30444 -3.1189%4
-6.72502 -5.29168 -3.32305
-9.15834 -4.85724 -3.29983
-10.1094 7-3.1849 | 8-1.73526
-8.65939 -1.92160 -0.17458
-4.98101 -5.68320 0.49883
-4.49320 -5.55093 4.77383
-3.78013 -3.17617 4.54486
-3.35850 -1.12322 2.95789
-2.77953 0.99667 1.98183
-2.44236 3.01808 0.60070
-2.86139 2.94140 -1.84227
-3.62002 0.85770 -2.94612

esfasijanijasiias]jan]jasfias]jan]iasilastjanlasflastjanfasl @] s (el [0l o] o) (olio][olP1(oleliolielleiPdieldicllolloliolioleliolr1ieliolielelieolr4(e

S-30



Table S3. Optimised ground state geometry of 3 (atom symbol, x, y, z Cartesian coordinates) (iPr
simplified to Me groups).

-2.65890 -4.46590 -1.86920
-2.49890 -3.54290 -0.85560
-1.28930 -3.27760 -0.37910
-0.12390 -3.89510 -0.85860
-0.27850 -4.84980 -1.89590
-1.53230 -5.12950 -2.39090
-4.00500 -4.66750 -2.28950
-4.91680 -3.99590 -1.62120
-6.28630 -3.91440 -1.76790
-7.08870 -4.66010 -2.64750
-8.45590 -4.44220 -2.67190
-9.02560 -3.47540 -1.82110
-8.24910 -2.72850 -0.95000
-6.85380 -2.93380 -0.89530

-4.91210 -5.69280 0.46050
-4.38100 -5.61570 4.73490
-3.75150 -3.22180 4.54290
-3.43480 -1.12450 2.96690
-2.78520 0.96970 1.98670
-2.43570 3.00970 0.62730
-2.85170 2.95700 -1.81970
-3.61970 0.87640 -2.93330
-5.08580 -7.22530 2.65960
-5.41350 -8.39710 2.70930
1.14440 -3.56250 -0.32320
2.24030 -3.28620 0.13020
13.89860 -2.85840 0.81520
5.13890 -4.13720 0.19880

-6.07380 -2.26310 -0.08200 4.37260 -1.13480 0.21730
-4.00420 -3.17120 2.40120 3.79410 -2.89460 2.69740
-4.33070 -3.89950 1.27530 5.19450 -4.14810 -0.89350
-4.66140 -5.18000 1.38100 3.64560 -0.38460 0.54140
-4.70530 -5.86210 2.60670 3.50170 -3.88300 3.06300

-4.36450 -5.12460 3.76880
-4.01740 -3.79640 3.66250
-3.66040 -1.81060 2.15570
-3.64230 -1.44740 0.89200
-3.39290 -0.23140 0.29000
-2.96380 0.95110 0.91590
-2.76850 2.09160 0.15560

1-5.9360 0-10.165 10 2.76900
-5.11680 -10.9782 04.25950
-7.81270 -10.2326 02.93150
-5.38320 -10.9996 01.17160
-5.40700 -10.4879 05.19330
-8.30530 -9.73660 2.09040
-4.29740 -10.9521 01.04940

-3.00580 2.05700 -1.23220 3.06050 -2.17480 3.07180
-3.43240 0.90100 -1.86550 4.75990 -2.64670 3.15010
-3.63100 -0.28040 -1.11950 4.42560 -1.08940 -0.87410
-4.02040 -1.40460 -1.67110 5.35120 -0.83820 0.60910
0-4.2436 0-2.7634 0-0.34080 6.14400 -3.92460 0.57780
-1.23170 -2.53980 0.41170 4.87010 -5.14600 0.52500

0.59660 -5.35270 -2.29100
-1.66500 -5.85930 -3.18200
-4.25120 -5.33090 -3.11340
-6.64030 -5.40170 -3.30160
-9.08600 -5.01260 -3.34540
-10.0985 0-3.3103 0-1.84870
-8.68820 -1.98040 -0.29930

-5.67130 -12.0560 01.15910
-5.83440 -10.5249 00.29550
-8.16880 -11.2679 02.95990
-8.15360 -9.74090 3.84700

-5.40260 -12.0323 04.33850
-4.02600 -10.9361 04.19080

an]jasyanyjasjan]jan]jan]jas}ian]jas] janfjan] janfjan}{=si{@} (@l @] 12} j=s] =s}=sl @l @@l 1] (@) (@) (@] @] ju=] jan] jan}{as]an] jasy janf jani

TIT|T|T ||| || OO alziaja|a|a|)Z|a|o|aa i lziala|0a|Z|0
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Table S4. Optimised ground state geometry of 2 (atom symbol, x, y, z Cartesian coordinates) (iPr

simplified to
C -2.72120 -4.35094 -1.90775
N -2.52502 -3.47732 -0.87512
C -1.29474 -3.19896 -0.46347
C -0.14754 -3.77509 -1.04324
C -0.34764 -4.67654 -2.10321
C -1.63327 -4.96269 -2.53357
C -4.10443 -4.55623 -2.27703
N -4.97746 -3.89734 -1.57833
C -6.35085 -3.79530 -1.67171
C -7.18893 -4.48759 -2.56821
C -8.54620 -4.25610 -2.52830
C -9.07690 -3.33218 -1.59741
C -8.27185 -2.64304 -0.71347
C -6.87490 -2.85794 -0.72994
Y -6.06280 -2.23211 0.08539
C -3.96156 -3.21837 2.45873
N -4.31669 -3.90852 1.33380
C -4.69766 -5.17635 1.42320
C -4.75232 -5.87201 2.64683
C -4.38117 -5.16553 3.80411
C -3.98651 -3.84077 3.70826
C -3.58946 -1.83883 2.23441
N -3.63228 -1.43787 1.00071
C -3.40678 -0.20658 0.41900
C -2.97682 0.96740 1.06895
C -2.80899 2.11746 0.32972
C -3.07142 2.10690 -1.06056
C -3.49514 0.96775 -1.71408
C -3.67613 -0.22869 -0.98354
O -4.07374 -1.33982 -1.55228
C 0-4.2574 3-2.7241 4 -0.25965
H -1.19691 -2.49325 0.35165
H 0.50837 -5.14037 -2.57878
H -1.80148 -5.65207 -3.35284
H -4.37727 -5.20303 -3.10604
H -6.77257 -5.19134 -3.28163
H -9.20866 -4.77619 -3.20999
H -10.1479 2-3.1584 4 -1.58154
H -8.68178 -1.93049 -0.00735
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Me groups).
H -4.97821 -5.67154 0.50215
H -4.41048 -5.66317 4.76617
H -3.70319 -3.28291 4.59330
H -3.32047 -1.18545 3.05953
H -2.78189 0.96792 2.13649
H -2.48070 3.03162 0.80993
H -2.93842 3.02241 -1.62771
H -3.70154 0.96541 -2.77793
C 1.14380 -3.44478 -0.56278
C 2.25638 -3.16806 -0.15684
C -5.17183 -7.22471 2.68706
C -5.53457 -8.38465 2.73361
S 13.97198 -2.75214 0.44845
C 5.14040 -4.05418 -0.23903
C 4.39222 -1.03506 -0.19287
C 3.92591 -2.79194 2.32890
H 5.1369%4 -4.06473 -1.33246
H 3.68738 -0.28209 0.17040
H 3.63408 -3.77617 2.70560
S i-6.1017 1-10.159 922.83118
C -6.03780 -10.6691 94.63932
C -7.85480 -10.2260 12.15359
C -4.92098 -11.1836 3 1.78356
H -6.69586 -10.0520 55.25724
H -7.90035 -9.89542 1.11220
H -3.89230 -11.1151 22.14798
H 4.87577 -5.05822 0.10399
H 6.16835 -3.85902 0.08251
H 4.91251 -2.56244 2.74383
H 3.22304 -2.05801 2.73317
H 5.39178 -0.73577 0.13818
H 4.38425 -0.99727 -1.28556
H -8.53652 -9.59645 2.73187
H -8.24300 -11.2488 7 2.19006
H -6.35696 -11.7092 74.75974
H -5.02653 -10.5884 6 5.04750
H -5.20589 -12.2403 51.80451
H -4.92570 -10.8648 1 0.73744




9. Cyclic Voltammetry (CV)

QO = N W A~ U

Current [pA]

-2 -1,5 - 0,5 0 0,5 1 15
Potential vs. Fc/Fc* [V]

Figure S44. Cyclic voltammogram of 1. Co(lll)/Co(ll) redox potential was calculated
tobe—0.55V.

10

Current [pA]

3 5, o, R ¢ 0 0,5 1 1,5
Potential vs. Fc/Fc* [V]

Figure §45. Cyclic voltammogram of 2. Co(lll)/Co(ll) redox potential was calculated
to be—0.57 V.
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10. X-ray photoelectron spectroscopy spectra (XPS)
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Figure $§46. Stacked XPS spectra of 2 (red) and 3 (green) complexes (Co binding energy range).

71
Llw_0 N KLL OKLL [Co2s ICb 2p1/2 |Co LMM O1s N1s Cl1s ICl2p [Si2s EZD 2 ¥
45 | (Co 2p3/2 Cl2s Cl2p1/p ISi 2p(Co 3p |Cf
Co2p cizpaz  |sizppr2 || I¢
0 3
404 O’;
a
q
35] S|
20} Go 39
25] Cl
»

¢ g
a

20

|
15]
| ‘l
LY \ e
104 A bt A Ll I |
e ‘HM r‘\\#‘” il"h\ W-‘{“w w " ¢ : I “MN'\LM” i Ltk ” | i &.W}‘
k iyet” TN e e \
| | \ L‘

: | I | | | | | J | ‘!;_+‘«MMW W}»M TWHN'I““LW Wi‘v"‘l

1200 900 300 0

600
Binding Energy (eV)

Figure S47. XPS spectrum of 2 (survey mode).

S-31



46

ICo 2p1/2 ICo 2p3/2

ICo 2p

44|

42]

40

38 ]

32

30

28

7N

Figure S48.

T
790
Binding Energy (eV)

XPS spectrum of 2 (Co binding energy range).

765

O 1s

CPS

544

T T T
532 528
Binding Energy (eV)

Figure §49. XPS spectrum of 2 (O binding energy range).
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Figure S§51. XPS spectrum of 2 (N binding energy range).
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Figure $52. XPS spectrum of 2 (Co and Si binding energy range).
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Figure $53. XPS spectrum of 3 (survey mode).
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Figure $§54. XPS spectrum of 3 (Co binding energy range).
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Figure S55. XPS spectrum of 3 (O binding energy range).
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Figure S57. XPS spectrum of 3 (N binding energy range).
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Figure §58. XPS spectrum of 3 (Co and Si binding energy range).
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