Supporting Information

Electronic effect of a perfluorinated β -diketiminate ligand on the bonding nature of copper carbonyl complexes

Kevin Huse, Hanns Weinert, Christoph Wölper, Stephan Schulz*

Content

I. NMR description of ¹⁷Fnac₂H (1)

Scheme S1: Illustration isomers 1A - 1C.

II. Calculated buried volume

Table S1: Calculated burried volumes for the model anions.

Scheme S2: Steric maps of L⁻ model anions.

III. Spectroscopic characterization

Fig. S1 - Fig. S9: ¹H, ¹³C and ¹⁹F NMR and mass spectra of ¹⁷Fnac₂H (1).

Fig. S10 - Fig. S16: ¹H, ¹³C and ¹⁹F NMR of ¹⁷Fnac₂H_NP (**2**).

Fig. S17 - Fig. S21: 1 H, 13 C and 19 F NMR and IR spectra of 17 Fnac₂CuC₆H₆ (3).

Fig. S22 - Fig. S28: ¹H, ¹³C and ¹⁹F NMR and IR spectra of ¹⁷Fnac₂CuCO (4).

IV. Crystallographic details

Table S2: Crystallographic data of compounds **3** and **4**.

Fig S29: Molecular structure of ¹⁷Fnac₂CuC₆H₆ (**3a** and **3b**).

Table S3: Selected bond parameters for ¹⁷Fnac₂CuC₆H₆ (3a and 3b).

V. Cyclic voltammetry

Fig S30: Overlay of cyclic voltammograms for $LCuC_6H_6$ complexes (L = ¹⁶Fnac₂, ¹⁷Fnac₂ (**3**); DCM/*n*-Bu₄BAr^F vs Fc^{0/+}).

Fig S31: Overlay of cyclic voltammograms for $LCuC_6H_6$ complexes (L = ${}^{16}Fnac_2$, ${}^{17}Fnac_2$ (**3**); DCM/*n*-Bu₄BAr^F vs Fc^{0/+}) over a wide scan range.

Tabel S4: Cyclic voltammetry data for $LCuC_6H_6$ complexes (L = ${}^{16}Fnac_2$, ${}^{17}Fnac_2$ (3), ${}^{18}Fnac_2$).

VI. Computational details

Fig S32: Illustration of NBOs for ¹⁷Fnac₂CuC₆H₆ (**3**).

Fig S33: Illustration of NBOs for ¹⁶Fnac₂CuCO.

Fig S34: Illustration of NBOs for ¹⁷Fnac₂CuCO (4).

Table S5: Cartesian coordinates (x,y,z) for the optimized geometry of model anion Mesnac₂⁻.

Table S6: Cartesian coordinates (x,y,z) for the optimized geometry of model anion ¹⁶Fnac₂⁻.

Table S7: Cartesian coordinates (x,y,z) for the optimized geometry of model anion ¹⁷Fnac₂⁻.

Table S8: Cartesian coordinates (x,y,z) for the optimized geometry for ¹⁷Fnac₂C₆H₆.

Table S9: Cartesian coordinates (x,y,z) for the optimized geometry for ¹⁷Fnac₂C₆H₆.

Table S10: Cartesian coordinates (x,y,z) for the optimized geometry for ¹⁷Fnac₂C₆H₆.

VII. References

I. NMR description ¹⁷Fnac₂H (1)

Signals were assigned via ¹⁹F-¹⁹F-COSY NMR spectroscopy. The signals for the *C*_{2v}-symmetric isomer **1A** show the expected three resonances for the C₆F₅ substituents. While the signals for the *ortho*- and *para*-fluorine atoms of isomer **1A** are clearly separated at -150.94 ppm (d, ³*J*_{FF} = 20.5 Hz) and -163.28 ppm (m) respectively, the signals for the *meta*-fluorine atoms of isomer **1A** and **1B** overlap at 162.21 ppm (overl. m). The resonance of the *y*-fluorine atom is found at -153.61 ppm (septd, ⁴*J*_{FF} = 22.2 Hz, ²*J*_{FH} = 2.9 Hz) as a septet of doublets. The septet splitting results from ⁴*J*_{FF}-coupling to the magnetically equivalent CF₃-groups in the ligand backbone, the doublet-splitting is due to ⁴*J*_{FH} through-space coupling to the NH proton in the enamine-imine structure (⁴*J*_{FH} = 2.9Hz). The magnetically equivalent CF₃ groups for isomer **1A** appear as doublets of triplets at -65.08 ppm (dt, ⁴*J*_{FF} = 22.2 Hz, ⁶*J*_{FF} = 3.6 Hz, 6F), the doublet splitting resulting from ⁴*J*_{FF} coupling of the CF₃-groups with the *y*-fluorine atom. The triplet splitting is due to through space interaction of the CF₃ group with the two *ortho*-fluorine atoms in close proximity, which could be detected by ¹⁹F-¹⁹F COSY NMR spectroscopy (see Figure S5) and was also detected for a similar ligand.^[1]

Scheme S1: Illustration of the ${}^{4}J_{FF}$ and through-space coupling partners in isomer **1A**. Highlighted in blue are the coupling partners responsible for the doublet of triplet splitting for the CF₃-groups, highlighted in red is the through space coupling interaction responsible for the doublet splitting of the NH proton (${}^{1}H$ NMR) and the doublet splitting of the septet for the γ -fluorine atom (${}^{19}F$ NMR).

The ¹⁹F NMR spectrum of isomer **1B** shows no higher symmetry. Two distinct singlet signals for the CF₃groups indicate the missing of a mirror plain in the molecule structure in solution. The γ -fluorine atom appears at higher field at -128.46 ppm as a singlet, which indicates bonding to a sp³-hybridized carbon atom as drawn in Scheme S1. This is further supported by the shift of the remaining proton in the ¹H NMR spectrum, which appears at 3.96 ppm, eliminating the possibility for a N-H group and hinting towards a C-H group. The C₆F₅ groups show two sets of signals [-150.42 (d, ³J_{FF} = 19.3 Hz, 2F, o-F), -151.57 (d, ³J_{FF} = 19.5 Hz, 2F, o-F), -156.50 (overl. t, ³J_{FF} = 21.4 Hz, 1F, p-F), -156.60 (overl. t, ³J_{FF} = 21.7 Hz, 2F, m-F), -158.48 (t, ³J_{FF} = 21.7 Hz, 1F, p-F), -162.21 (overl. m, 2F, m-F)]. While these are the main isomers in solution, additional isomers are present in the ¹⁹F NMR spectrum. Variable temperature NMR spectroscopy studies carried out between -80 °C to 60 °C in chloroform-d₁ did not show any signs of a temperature dependent equilibrium. However, addition of sulfuric acid to a solution of ¹⁷Fnac₂H in benzene- d_6 resulted in an incomplete shift of the isomer ratio towards isomer **1B**. Low resolution mass spectrometry of LH only shows the M and M⁻ fragments expected for the ligand, whereas no peak corresponding to the hemiaminal **1C** is detected. Upon solvation in DMSO- d_6 all isomers quantitively undergo the cyclisation reaction with hydrogen fluoride elimination (see Figure S10). The reason for the magnetically inequivalent CF₃ groups as well as for the aryl substituents for isomer **1B** thus remains unknown.

II. Calculated buried volume

_	Complex	Vburied	V _{free}	
	Mesnac ₂ ⁻	53.7	46.0	
	¹⁶ Fnac ₂ ⁻	49.6	50.4	
	¹⁷ Fnac ₂ ⁻	51.6	48.4	
Mesnac ₂ ⁻		¹⁶ Fnac ₂ ⁻	¹⁷ Fnac ₂ ⁻	
70 60 50 40 30	3 50 2 23 1 50 - 0.73 0 20	100 225 100 300 300 300 300 300 300 300 300 300	70 50 40 30	3.00 2.25 1.50 0.75 0.00
	-0.75 -1.50 -2.25 -3.00			-0.75 -1.50 -2.25 -3.60

Table S1: Calculated buried volumes for the model anions Mesnac₂^{-,16}Fnac₂⁻, and ¹⁷Fnac₂⁻.

Scheme S2: Steric maps of L⁻ model anions $Mesnac_2^{-,16}Fnac_2^{-}$ and ${}^{17}Fnac_2^{-}$ derived from solid state structures of appropriate $Fnac_2Cu$ -R complexes. The corresponding copper atom was chosen as the spheres center and the sphere radius was set to 3.5 Å.

III. Spectroscopic characterization

Fig. S1: ¹H NMR of ¹⁷Fnac₂H (Isomer $A(\bigcirc)$), Isomer $B(\nabla)$) in benzene- d_6 at room temperature.

Fig. S2: ¹⁹F NMR of ¹⁷Fnac₂H (Isomer $A(\bigcirc)$) Isomer $B(\nabla)$) in benzene- d_6 at room temperature.

Fig. S3: ¹⁹F-¹⁹F-COSY NMR spectrum of ligand ¹⁷Fnac₂H in bezene- d_6 at room temperature. The signals resulting from CF₃- γ -F interactions are highlighted. Symbols indicate the isomers **A** and **B** as mentioned before.

Fig. S4: Aromatic region of the ¹⁹F-¹⁹F COSY NMR spectrum of ligand ¹⁷Fnac₂H in benzene- d_6 at room temperature. Symbols indicate the isomers **A** and **B** as mentioned before.

Fig. S5: Correlation between the CF_3 -groups and the *ortho*-fluorine atoms of isomer **1A** in the ¹⁹F-¹⁹F COSY NMR spectrum measured in CDCl₃ at room temperature.

Fig. S6: ¹³C-¹⁹F HMQC NMR of ¹⁷Fnac₂H (Isomer A(\bigcirc), Isomer B(∇)) for the aromatic region in benzene*d*₆ at room temperature.

Fig. S7: ¹³C-¹⁹F HMQC NMR of ¹⁷Fnac₂H (Isomer A(\bigcirc), Isomer B(∇)) for the aliphatic region in benzened₆ at room temperature.

room temperature.

b) Spectra of cyclic byproduct ¹⁷Fnac₂H_NP (2)

Fig. S10: Formation of **2** under HF elimination. Top: **1** in C₆D₆. Middle: Addition of DMSO- d_6 to **1** yields **2** with HF elimination (doublet at 167.57 ppm). Bottom: Same sample after application of vacuum.

The chemical shift of HF as well as the signal structure strongly depends on the measuring conditions, as concentration and temperature greatly affect the degree of oligomerization of HF and therefore have a large influence on the chemical shift of the detected ¹⁹F NMR signals. For a detailed study on the effect of temperature and concentration on the appearance of the NMR signals of HF, see the following references: a) J. Shamir, A. Netzer, *N.M.R. Studies of Anhydrous Hydrogen Fluoride Solutions*, CAN. J. CHEM. VOL. 51, 1973, 2676. b) I. G. Shenderovich, S. N. Smirnov, G. S. Denisov, V.A. Gindin, N. S. Golubev, A. DUnger, R. Reibke, S. Kirpekar, O. L. Malkina, H. H. Limbach, *Nuclear Magnetic Resonance of Hydrogen Bonded Clusters Between F⁻ and (HF)_n: Experiment and Theory*, Ber. Bunsenges. Phys. Chem. 102, 422–428 (1998) No. 3.

Fig. S11: ¹H NMR spectrum of ¹⁷Fnac₂H_NP in DMSO- d_6 at room temperature. Signals marked with \bigcirc belong to *n*-hexane.

Fig. S12: ¹⁹F NMR spectrum of ¹⁷Fnac₂H_NP in DMSO-*d*₆ at room temperature.

Fig. S13: ¹⁹F-¹⁹F COSY NMR spectrum of ¹⁷Fnac₂H_NP in DMSO-*d*₆ at room temperature.

Fig. S14: ${}^{13}C^{-19}F$ HMQC NMR spectrum of ${}^{17}Fnac_2H_NP$ in DMSO- d_6 at room temperature.

Fig. S15: ${}^{13}C{}^{19}F{}$ NMR spectrum of ${}^{17}Fnac_2H_NP$ in DMSO- d_6 at room temperature.

Fig. S16: ATR-IR spectrum of ¹⁷Fnac₂_NP.

Fig. S17: ¹H NMR ¹⁷Fnac₂CuC₆D₆ in benzene- d_6 at room temperature. Signals marked with ∇ belong to mesitylene.

Fig. S18: ¹⁹F NMR of ¹⁷Fnac₂CuC₆D₆ in benzene- d_6 at room temperature.

Fig. S19: ¹³C{¹⁹F} NMR of ¹⁷Fnac₂CuC₆D₆ in benzene- d_6 at room temperature with ¹⁹F decoupling pulse at -60 ppm. Signals marked with ∇ belong to mesitylene.

Fig. S20: ¹³C{¹⁹F} NMR of ¹⁷Fnac₂CuC₆D₆ in benzene- d_6 at room temperature with ¹⁹F decoupling pulse at -110 ppm. Signals marked with ∇ belong to mesitylene.

Fig. S21: ATR-IR spectrum of $^{17}\mbox{Fnac}_2\mbox{CuC}_6\mbox{H}_6.$

d) Spectra of ¹⁷Fnac₂CuCO (4)

Fig. S22: ¹H NMR ¹⁷Fnac₂CuCO in benzene- d_6 at room temperature. Signals marked with ∇ belong to mesitylene.

Fig. S23: ¹³C{¹⁹F} NMR of ¹⁷Fnac₂CuCO in benzene- d_6 at room temperature with ¹⁹F decoupling pulse at -60 ppm. Signals marked with ∇ belong to mesitylene.

Fig. S24: ¹³C{¹⁹F} NMR of ¹⁷Fnac₂CuCO in benzene- d_6 at room temperature with ¹⁹F decoupling pulse at -110 ppm. Signals marked with ∇ belong to mesitylene.

Fig. S25: ¹⁹F NMR spectrum of ¹⁷Fnac₂CuCO in benzene- d_6 at room temperature.

Fig. S26: ${}^{13}C{}^{-19}F$ HMQC NMR of ${}^{17}Fnac_2CuCO$ in benzene- d_6 at room temperature.

Fig. S27: ${}^{13}C{}^{19}F$ HMQC NMR of ${}^{17}Fnac_2CuCO$ in benzene- d_6 at room temperature.

Fig. S28: ATR-IR spectrum of 17 Fnac₂CuCO. The peak marked with ∇ belongs to n-hexane.

IV. Crystallographic details

Table S2: Crystallographic data of compounds 3 and 4.

Identification code	3 (kh_v089_2m)	4 (kh_v092_2m)
Empirical formula	$C_{23}H_6CuF_{17}N_2$	C ₁₈ CuF ₁₇ N ₂ O
Μ	696.84	646.74
Crystal size [mm]	0.388 × 0.270 × 0.088	0.360 × 0.122 × 0.105
<i>Т</i> [K]	100(2)	100(2)
Crystal system	monoclinic	triclinic
Space group	P 2 ₁ /n	<i>P</i> -1
a [Å]	12.2119(18)	5.2839(8)
b [Å]	20.738(3)	9.5521(14)
<i>c</i> [Å]	18.601(3)	20.684(3)
α [°]	90	82.526(7)
β [°]	102.689(4)	83.221(7)
γ [°]	90	76.884(7)
V [Å ³]	4595.6(12)	1003.9(3)
Ζ	8	2
D _{calc} [g⋅cm ⁻³]	2.014	2.140
μ([mm ⁻¹])	2.847 Cu <i>K</i> α	1.262 Μο <i>Κ</i> α
Transmissions	0.75/0.54	0.75/0.59
<i>F</i> (000)	2720	624
Index ranges	-12 ≤ <i>h</i> ≤ 15	$-7 \le h \le 7$
	$-26 \le k \le 26$	-13 ≤ <i>k</i> ≤ 13
	-23 ≤ <i>l</i> ≤ 23	-28 ≤ <i>l</i> ≤ 29
θ _{max} [°]	80.719	30.888
Reflections collected	144722	34292
Independent reflections	10029	6192
Rint	0.0503	0.0425
Refined parameters	775	389
$R_1\left[l > 2\sigma(l)\right]$	0.0300	0.0329
wR ₂ [all data]	0.0834	0.0899
GooF	1.057	1.086
Δρ _{final} (max/min) [e⋅Å ⁻³]	0.610/-0.587	0.586/-0.551

Fig S29: Molecular structure of ¹⁷Fnac₂CuC₆H₆ **3a** and **3b**; Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S3: Important bond lengths and angles for both molecules in the asymmetric unit in crystals of 17 Fnac₂CuC₆H₆ (**3a** and **3b**)

	3 a [Å/°]	3b [Å/°]
Cu-N1	1.9557(12)	1.9830(12)
Cu-N2	1.9539(12)	1.9652(12)
Cu-C18	2.1088(14)	2.1148(15)
Cu-C19	2.1092(15)	2.1831(15)
C18-C19	1.408(2)	1.400(2)
C19-C20	1.411(2)	1.398(2)
C20-C21	1.377(3)	1.370(2)
C21-C22	1.407(3)	1.397(2)
C22-C23	1.371(3)	1.380(2)
C23-C18	1.411(2)	1.426(2)
N1-Cu-N2	98.06(5)	98.99(5)

VI. Cyclic voltammetry

Fig S30: Overlay of cyclic voltammograms for $LCuC_6H_6$ complexes (L = ¹⁶Fnac₂, ¹⁷Fnac₂ (**3**); DCM/*n*-Bu₄BAr^F vs Fc^{0/+}).

Fig S31: Overlay of cyclic voltammograms for $LCuC_6H_6$ complexes (L = ¹⁶Fnac₂, ¹⁷Fnac₂ (**3**); DCM/*n*-Bu₄BAr^F vs Fc^{0/+}) over a wide scan range.

Tabel S4: Cyclic voltammetry data in DCM/*n*-Bu₄BAr^F vs $Fc^{0/+}$ with a scan rate of 100 mV/s for LCuC₆H₆ complexes (L = ¹⁶Fnac₂, ¹⁷Fnac₂ (**3**), ¹⁸Fnac₂).

¹⁸ Fnac ₂ C	uC ₆ H ₆	¹⁶ Fnac ₂ CuC ₆ H ₆ ¹⁷ Fnac ₂ Cu		CuC ₆ H ₆	
Potential [V]	Current	Potential [V]	Current	Potential	Current
-0.47394	-4.43E-09	0.02792	3.52E-07	0.05173	8.01E-07
-0.4599	-2.50E-09	0.03586	3.53E-07	0.05966	8.02E-07
-0.44586	-1.13E-09	0.04379	3.54E-07	0.0676	8.03E-07
-0.43182	2.14E-10	0.05173	3.55E-07	0.07553	8.04E-07
-0.41779	8.85E-10	0.05966	3.56E-07	0.08347	8.05E-07
-0.40375	2.04E-09	0.0676	3.56E-07	0.0914	8.05E-07
-0.38971	2.66E-09	0.07553	3.57E-07	0.09933	8.07E-07
-0.37567	3.42E-09	0.08347	3.57E-07	0.10727	8.06E-07
-0.36163	4.06E-09	0.0914	3.58E-07	0.1152	8.07E-07
-0.3476	5.00E-09	0.09933	3.58E-07	0.12314	8.08E-07
-0.33356	5.62E-09	0.10727	3.59E-07	0.13107	8.08E-07
-0.31952	6.32E-09	0.1152	3.59E-07	0.13901	8.09E-07
-0.30548	7.17E-09	0.12314	3.60E-07	0.14694	8.09E-07
-0.29144	7.66E-09	0.13107	3.61E-07	0.15488	8.10E-07
-0.2774	8.94E-09	0.13901	3.60E-07	0.16281	8.11E-07
-0.26337	9.64E-09	0.14694	3.62E-07	0.17075	8.11E-07
-0.24933	1.14E-08	0.15488	3.62E-07	0.17868	8.12E-07
-0.23529	1.28E-08	0.16281	3.63E-07	0.18661	8.12E-07
-0.22125	1.46E-08	0.17075	3.64E-07	0.19455	8.12E-07
-0.20721	1.66E-08	0.17868	3.65E-07	0.20248	8.13E-07
-0.19318	1.81E-08	0.18661	3.66E-07	0.21042	8.14E-07
-0.17914	1.92E-08	0.19455	3.68E-07	0.21835	8.14E-07
-0.1651	1.95E-08	0.20248	3.69E-07	0.22629	8.15E-07
-0.15106	2.01E-08	0.21042	3.71E-07	0.23422	8.15E-07
-0.13702	2.01E-08	0.21835	3.73E-07	0.24216	8.16E-07
-0.12299	2.00E-08	0.22629	3.75E-07	0.25009	8.16E-07
-0.10895	1.97E-08	0.23422	3.79E-07	0.25803	8.17E-07
-0.09491	1.95E-08	0.24216	3.83E-07	0.26596	8.18E-07
-0.08087	1.95E-08	0.25009	3.87E-07	0.2739	8.18E-07
-0.06683	1.93E-08	0.25803	3.92E-07	0.28183	8.19E-07
-0.0528	1.94E-08	0.26596	3.98E-07	0.28976	8.20E-07
-0.03876	1.91E-08	0.2739	4.05E-07	0.2977	8.20E-07
-0.02472	1.93E-08	0.28183	4.13E-07	0.30563	8.21E-07
-0.01068	1.92E-08	0.28976	4.22E-07	0.31357	8.22E-07
0.00336	1.92E-08	0.2977	4.32E-07	0.3215	8.22E-07
0.01739	1.93E-08	0.30563	4.44E-07	0.32944	8.24E-07
0.03143	1.93E-08	0.31357	4.57E-07	0.33737	8.24E-07
0.04547	1.95E-08	0.3215	4.73E-07	0.34531	8.25E-07
0.05951	1.94E-08	0.32944	4.90E-07	0.35324	8.26E-07
0.07355	1.99E-08	0.33737	5.10E-07	0.36118	8.28E-07
0.08759	1.99E-08	0.34531	5.33E-07	0.36911	8.29E-07

0.10162	2.07E-08	0.35324	5.56E-07	0.37704	8.30E-07
0.11566	2.08E-08	0.36118	5.80E-07	0.38498	8.32E-07
0.1297	2.18E-08	0.36911	6.06E-07	0.39291	8.34E-07
0.14374	2.40E-08	0.37704	6.26E-07	0.40085	8.36E-07
0.15778	2.62E-08	0.38498	6.47E-07	0.40878	8.38E-07
0.17181	3.06E-08	0.39291	6.62E-07	0.41672	8.41E-07
0.18585	3.71E-08	0.40085	6.73E-07	0.42465	8.44E-07
0.19989	4.74E-08	0.40878	6.80E-07	0.43259	8.49E-07
0.21393	6.23E-08	0.41672	6.84E-07	0.44052	8.53E-07
0.22797	8.39E-08	0.42465	6.84E-07	0.44846	8.59E-07
0.242	1.12E-07	0.43259	6.82E-07	0.45639	8.65E-07
0.25604	1.43E-07	0.44052	6.79E-07	0.46432	8.72E-07
0.27008	1.75E-07	0.44846	6.75E-07	0.47226	8.82E-07
0.28412	2.00E-07	0.45639	6.71E-07	0.48019	8.92E-07
0.29816	2.17E-07	0.46432	6.65E-07	0.48813	9.05E-07
0.31219	2.24E-07	0.47226	6.60E-07	0.49606	9.21E-07
0.32623	2.25E-07	0.48019	6.56E-07	0.504	9.39E-07
0.34027	2.21E-07	0.48813	6.50E-07	0.51193	9.60E-07
0.35431	2.15E-07	0.49606	6.46E-07	0.51987	9.85E-07
0.36835	2.09E-07	0.504	6.42E-07	0.5278	1.01E-06
0.38239	2.02E-07	0.51193	6.38E-07	0.53574	1.04E-06
0.39642	1.96E-07	0.51987	6.34E-07	0.54367	1.07E-06
0.41046	1.91E-07	0.5278	6.31E-07	0.55161	1.11E-06
0.4245	1.86E-07	0.53574	6.28E-07	0.55954	1.14E-06
0.43854	1.83E-07	0.54367	6.26E-07	0.56747	1.17E-06
0.45258	1.79E-07	0.55161	6.23E-07	0.57541	1.20E-06
0.46661	1.77E-07	0.55954	6.21E-07	0.58334	1.23E-06
0.48065	1.75E-07	0.56747	6.19E-07	0.59128	1.24E-06
0.49469	1.75E-07	0.57541	6.17E-07	0.59921	1.26E-06
0.50873	1.76E-07	0.58334	6.16E-07	0.60715	1.27E-06
0.52277	1.78E-07	0.59128	6.15E-07	0.61508	1.28E-06
0.5368	1.82E-07	0.59921	6.14E-07	0.62302	1.28E-06
0.55084	1.88E-07	0.60715	6.13E-07	0.63095	1.28E-06
0.56488	1.98E-07	0.61508	6.12E-07	0.63889	1.28E-06
0.55084	1.73E-07	0.62302	6.12E-07	0.64682	1.28E-06
0.5368	1.57E-07	0.61508	5.97E-07	0.65475	1.28E-06
0.52277	1.45E-07	0.60715	5.86E-07	0.66269	1.27E-06
0.50873	1.36E-07	0.59921	5.76E-07	0.67062	1.27E-06
0.49469	1.30E-07	0.59128	5.68E-07	0.67856	1.26E-06
0.48065	1.24E-07	0.58334	5.60E-07	0.68649	1.26E-06
0.46661	1.20E-07	0.57541	5.54E-07	0.69443	1.25E-06
0.45258	1.16E-07	0.56747	5.48E-07	0.70236	1.25E-06
0.43854	1.13E-07	0.55954	5.42E-07	0.7103	1.24E-06
0.4245	1.10E-07	0.55161	5.38E-07	0.71823	1.24E-06
0.41046	1.07E-07	0.54367	5.33E-07	0.72617	1.23E-06
0.39642	1.03E-07	0.53574	5.28E-07	0.7341	1.23E-06
0.38239	1.00E-07	0.5278	5.24E-07	0.74203	1.23E-06
0.36835	9.54E-08	0.51987	5.20E-07	0.74997	1.23E-06

0.35431	8.96E-08	0.51193	5.17E-07	0.7579	1.22E-06
0.34027	8.21E-08	0.504	5.13E-07	0.76584	1.22E-06
0.32623	7.19E-08	0.49606	5.09E-07	0.77377	1.22E-06
0.31219	5.81E-08	0.48813	5.06E-07	0.78171	1.22E-06
0.29816	4.07E-08	0.48019	5.02E-07	0.78964	1.22E-06
0.28412	1.95E-08	0.47226	4.98E-07	0.79758	1.22E-06
0.27008	-2.78E-09	0.46432	4.93E-07	0.80551	1.22E-06
0.25604	-2.49E-08	0.45639	4.89E-07	0.81345	1.22E-06
0.242	-4.20E-08	0.44846	4.84E-07	0.82138	1.22E-06
0.22797	-5.33E-08	0.44052	4.79E-07	0.82932	1.22E-06
0.21393	-5.86E-08	0.43259	4.73E-07	0.83725	1.22E-06
0.19989	-5.95E-08	0.42465	4.66E-07	0.84518	1.23E-06
0.18585	-5.79E-08	0.41672	4.59E-07	0.85312	1.23E-06
0.17181	-5.51E-08	0.40878	4.51E-07	0.86105	1.24E-06
0.15778	-5.22E-08	0.40085	4.42E-07	0.86899	1.24E-06
0.14374	-4.92E-08	0.39291	4.34E-07	0.87692	1.25E-06
0.1297	-4.66E-08	0.38498	4.22E-07	0.88486	1.25E-06
0.11566	-4.41E-08	0.37704	4.12E-07	0.89279	1.26E-06
0.10162	-4.21E-08	0.36911	4.01E-07	0.90073	1.27E-06
0.08759	-4.02E-08	0.36118	3.91E-07	0.90866	1.28E-06
0.07355	-3.87E-08	0.35324	3.80E-07	0.9166	1.28E-06
0.05951	-3.75E-08	0.34531	3.70E-07	0.92453	1.29E-06
0.04547	-3.64E-08	0.33737	3.61E-07	0.93246	1.30E-06
0.03143	-3.55E-08	0.32944	3.53E-07	0.9404	1.30E-06
0.01739	-3.45E-08	0.3215	3.46E-07	0.94833	1.31E-06
0.00336	-3.39E-08	0.31357	3.39E-07	0.95627	1.31E-06
-0.01068	-3.33E-08	0.30563	3.35E-07	0.9642	1.32E-06
-0.02472	-3.29E-08	0.2977	3.30E-07	0.97214	1.33E-06
-0.03876	-3.24E-08	0.28976	3.28E-07	0.98007	1.33E-06
-0.0528	-3.21E-08	0.28183	3.26E-07	0.98801	1.34E-06
-0.06683	-3.20E-08	0.2739	3.24E-07	0.99594	1.34E-06
-0.08087	-3.21E-08	0.26596	3.23E-07	1.00388	1.35E-06
-0.09491	-3.25E-08	0.25803	3.23E-07	1.01181	1.35E-06
-0.10895	-3.33E-08	0.25009	3.22E-07	1.01974	1.35E-06
-0.12299	-3.45E-08	0.24216	3.22E-07	1.02768	1.36E-06
-0.13702	-3.66E-08	0.23422	3.22E-07	1.03561	1.36E-06
-0.15106	-3.98E-08	0.22629	3.22E-07	1.04355	1.37E-06
-0.1651	-4.39E-08	0.21835	3.22E-07	1.05148	1.38E-06
-0.17914	-4.87E-08	0.21042	3.22E-07	1.04355	1.34E-06
-0.19318	-5.33E-08	0.20248	3.23E-07	1.03561	1.31E-06
-0.20721	-5.65E-08	0.19455	3.23E-07	1.02768	1.29E-06
-0.22125	-5.83E-08	0.18661	3.23E-07	1.01974	1.27E-06
-0.23529	-5.87E-08	0.17868	3.23E-07	1.01181	1.25E-06
-0.24933	-5.78E-08	0.17075	3.23E-07	1.00388	1.23E-06
-0.26337	-5.65E-08	0.16281	3.24E-07	0.99594	1.22E-06
-0.2774	-5.49E-08	0.15488	3.24E-07	0.98801	1.20E-06
-0.29144	-5.34E-08	0.14694	3.24E-07	0.98007	1.19E-06
-0.30548	-5.18E-08	0.13901	3.24E-07	0.97214	1.18E-06

-0.31952	-5.08E-08	0.13107	3.24E-07	0.9642	1.17E-06
-0.33356	-4.96E-08	0.12314	3.24E-07	0.95627	1.16E-06
-0.3476	-4.89E-08	0.1152	3.25E-07	0.94833	1.15E-06
-0.36163	-4.83E-08	0.10727	3.24E-07	0.9404	1.13E-06
-0.37567	-4.79E-08	0.09933	3.24E-07	0.93246	1.12E-06
-0.38971	-4.79E-08	0.0914	3.24E-07	0.92453	1.12E-06
-0.40375	-4.76E-08	0.08347	3.24E-07	0.9166	1.11E-06
-0.41779	-4.77E-08	0.07553	3.24E-07	0.90866	1.10E-06
-0.43182	-4.80E-08	0.0676	3.24E-07	0.90073	1.09E-06
-0.44586	-4.86E-08	0.05966	3.25E-07	0.89279	1.08E-06
-0.4599	-4.84E-08	0.05173	3.24E-07	0.88486	1.07E-06
-0.47394	-4.90E-08	0.04379	3.24E-07	0.87692	1.06E-06
-0.48798	-4.94E-08	0.03586	3.24E-07	0.86899	1.06E-06
-0.50201	-4.98E-08	0.02792	3.24E-07	0.86105	1.05E-06
-0.51605	-5.04E-08	0.01999	3.24E-07	0.85312	1.04E-06
-0.53009	-5.10E-08	0.01205	3.24E-07	0.84518	1.04E-06
-0.54413	-5.13E-08	0.00412	3.23E-07	0.83725	1.03E-06
-0.55817	-5.19E-08	-0.00381	3.23E-07	0.82932	1.03E-06
-0.5722	-5.26E-08	-0.01175	3.23E-07	0.82138	1.02E-06
-0.58624	-5.30E-08	-0.01968	3.22E-07	0.81345	1.02E-06
-0.60028	-5.37E-08	-0.02762	3.21E-07	0.80551	1.02E-06
-0.61432	-5.43E-08	-0.03555	3.21E-07	0.79758	1.01E-06
-0.62836	-5.52E-08	-0.04349	3.20E-07	0.78964	1.01E-06
-0.6424	-5.58E-08	-0.05142	3.19E-07	0.78171	1.01E-06
-0.65643	-5.69E-08	-0.05936	3.17E-07	0.77377	1.01E-06
-0.67047	-5.77E-08	-0.06729	3.16E-07	0.76584	1.00E-06
-0.68451	-5.87E-08	-0.07523	3.14E-07	0.7579	1.00E-06
-0.69855	-5.99E-08	-0.08316	3.13E-07	0.74997	1.00E-06
-0.68451	-4.33E-08	-0.09109	3.13E-07	0.74203	9.98E-07
-0.67047	-3.36E-08	-0.09903	3.10E-07	0.7341	9.96E-07
-0.65643	-2.67E-08	-0.10696	3.11E-07	0.72617	9.95E-07
-0.6424	-2.19E-08	-0.1149	3.09E-07	0.71823	9.93E-07
-0.62836	-1.78E-08	-0.12283	3.09E-07	0.7103	9.91E-07
-0.61432	-1.50E-08	-0.13077	3.09E-07	0.70236	9.89E-07
-0.60028	-1.22E-08	-0.1387	3.08E-07	0.69443	9.88E-07
-0.58624	-1.01E-08	-0.14664	3.08E-07	0.68649	9.86E-07
-0.5722	-8.36E-09	-0.15457	3.09E-07	0.67856	9.83E-07
-0.55817	-6.65E-09	-0.16251	3.09E-07	0.67062	9.81E-07
-0.54413	-5.31E-09	-0.17044	3.09E-07	0.66269	9.78E-07
-0.53009	-3.88E-09	-0.17838	3.10E-07	0.65475	9.75E-07
-0.51605	-2.75E-09	-0.18631	3.09E-07	0.64682	9.71E-07
-0.50201	-1.65E-09	-0.19424	3.10E-07	0.63889	9.67E-07
-0.48798	-6.71E-10	-0.20218	3.10E-07	0.63095	9.63E-07
-0.47394	2.75E-10	-0.21011	3.10E-07	0.62302	9.55E-07
		-0.21805	3.10E-07	0.61508	9.50E-07
		-0.22598	3.10E-07	0.60715	9.42E-07
		-0.23392	3.10E-07	0.59921	9.33E-07
		-0.24185	3.10E-07	0.59128	9.23E-07

-0.24979	3.11E-07	0.58334	9.12E-07
-0.25772	3.11E-07	0.57541	8.99E-07
-0.26566	3.11E-07	0.56747	8.86E-07
-0.27359	3.11E-07	0.55954	8.72E-07
-0.28152	3.10E-07	0.55161	8.58E-07
-0.28946	3.10E-07	0.54367	8.44E-07
-0.29739	3.10E-07	0.53574	8.30E-07
-0.30533	3.10E-07	0.5278	8.18E-07
-0.31326	3.09E-07	0.51987	8.06E-07
-0.3212	3.10E-07	0.51193	7.95E-07
-0.32913	3.10E-07	0.504	7.86E-07
-0.33707	3.08E-07	0.49606	7.78E-07
-0.345	3.09E-07	0.48813	7.71E-07
-0.35294	3.08F-07	0.48019	7.66F-07
-0.36087	3.08F-07	0.47226	7.62F-07
-0.3688	3.08E-07	0.46432	7.58F-07
-0 37674	3.00E 07	0 45639	7 55E-07
-0 38467	3.07E-07	0 44846	7 53E-07
-0 39261	3.07E 07	0 44052	7 52F-07
-0 40054	3.06E-07	0 43259	7 51F-07
-0 40848	3.05E-07	0 42465	7 50F-07
-0 41641	3.05E-07	0 41672	7 49F-07
-0 42435	3.03E 07	0 40878	7 49F-07
-0 43228	3.04E-07	0 40085	7 49F-07
-0 44022	3.04E-07	0 39291	7 48F-07
-0 44815	3.03E-07	0 38498	7 48F-07
-0.45609	3.03E 07	0.37704	7.48E-07
-0 46402	3.02E 07	0 36911	7 48F-07
-0 47195	3.01E-07	0 36118	7 48F-07
-0 47989	3.01E 07	0 35324	7 48F-07
-0 48782	3.00E-07	0 34531	7 48F-07
-0 47989	3 10F-07	0 33737	7 48F-07
-0 47195	3.10E 07	0.33944	7.48E-07
-0.46402	3.27E-07	0.3215	7.48E-07
-0.45609	3 26E-07	0.31357	7 48F-07
-0 44815	3 30F-07	0 30563	7 48F-07
-0 44022	3 33E-07	0 2977	7.49F-07
-0 43228	3 35E-07	0 28976	7 48F-07
-0 42435	3.33E 07	0.28183	7 48F-07
-0 41641	3.40F-07	0 2739	7 48F-07
-0 40848	3.42E-07	0.26596	7 48F-07
-0.40054	3.43F-07	0.25803	7 48F-07
-0 39261	3.45E-07	0 25009	7 <u>4</u> 8F-07
-0 38467	3.45E 07	0.23005	7 <u>4</u> 8F_07
-0 37674	3.40L-07	0.24270	7 <u>4</u> 7F_07
-0 3688	3.47 L-07	0.23422	7.47F_07
-0 36087	3 49F-07	0 21835	7 46F-07
-0 32201	3.49L-07	0.21033	7 <u>1</u> 5F_07
0.00204	J. TJL-07	0.21042	7. T JL-07

-0.345	3.50E-07	0.20248	7.44E-07
-0.33707	3.51E-07	0.19455	7.43E-07
-0.32913	3.51E-07	0.18661	7.42E-07
-0.3212	3.52E-07	0.17868	7.40E-07
-0.31326	3.52E-07	0.17075	7.39E-07
-0.30533	3.53E-07	0.16281	7.35E-07
-0.29739	3.54E-07	0.15488	7.33E-07
-0.28946	3.54E-07	0.14694	7.30E-07
-0.28152	3.55E-07	0.13901	7.27E-07
-0.27359	3.55E-07	0.13107	7.24E-07
-0.26566	3.56E-07	0.12314	7.21E-07
-0.25772	3.56E-07	0.1152	7.19E-07
-0.24979	3.57E-07	0.10727	7.17E-07
-0.24185	3.57E-07	0.09933	7.16E-07
-0.23392	3.58E-07	0.0914	7.15E-07
-0.22598	3.58E-07	0.08347	7.15E-07
-0.21805	3.59E-07	0.07553	7.16E-07
-0.21011	3.59E-07	0.0676	7.17E-07
-0.20218	3.59E-07	0.05966	7.18E-07
-0.19424	3.60E-07	0.05173	7.19E-07
-0.18631	3.60E-07	0.04379	7.20E-07
-0.17838	3.61E-07	0.03586	7.21E-07
-0.17044	3.61E-07	0.02792	7.23E-07
-0.16251	3.61E-07	0.01999	7.24E-07
-0.15457	3.63E-07	0.01205	7.25E-07
-0.14664	3.63E-07	0.00412	7.26E-07
-0.1387	3.63E-07	-0.00381	7.27E-07
-0.13077	3.64E-07	-0.01175	7.28E-07
-0.12283	3.64E-07	-0.01968	7.29E-07
-0.1149	3.65E-07	-0.02762	7.30E-07
-0.10696	3.65E-07	-0.03555	7.31E-07
-0.09903	3.67E-07	-0.04349	7.31E-07
-0.09109	3.67E-07	-0.05142	7.32E-07
-0.08316	3.68E-07	-0.05936	7.34E-07
-0.07523	3.68E-07	-0.06729	7.33E-07
-0.06729	3.69E-07	-0.07523	7.34E-07
-0.05936	3.70E-07	-0.08316	7.35E-07
-0.05142	3.70E-07	-0.09109	7.36E-07
-0.04349	3.70E-07	-0.09903	7.36E-07
-0.03555	3.70E-07	-0.10696	7.36E-07
-0.02762	3.70E-07	-0.1149	7.37E-07
-0.01968	3.70E-07	-0.12283	7.37E-07
-0.01175	3.71E-07	-0.13077	7.37E-07
-0.00381	3.71E-07	-0.1387	7.38E-07
0.00412	3.71E-07	-0.14664	7.39E-07
0.01205	3.71E-07	-0.15457	7.39E-07
0.01999	3.71E-07	-0.16251	7.39E-07
		-0.17044	7.39E-07

-0.17838	7.40E-07
-0.18631	7.40E-07
-0.19424	7.40E-07
-0.20218	7.41E-07
-0.21011	7.41E-07
-0.21805	7.41E-07
-0.22598	7.41E-07
-0.23392	7.42E-07
-0.24185	7.42E-07
-0 24979	7 42F-07
-0 25772	7.42E 07
-0.26566	7.426.07
-0.20300	7.421-07
-0.27559	7.45E-07
-0.28152	7.43E-07
-0.28946	7.44E-07
-0.29739	7.42E-07
-0.30533	7.43E-07
-0.31326	7.43E-07
-0.3212	7.43E-07
-0.32913	7.43E-07
-0.33707	7.43E-07
-0.345	7.43E-07
-0.35294	7.43E-07
-0.36087	7.43E-07
-0.3688	7.43E-07
-0.37674	7.43E-07
-0.38467	7.43E-07
-0.39261	7.43E-07
-0.40054	7.43E-07
-0.40848	7.43E-07
-0.41641	7.43E-07
-0.42435	7.43E-07
-0.43228	7.42E-07
-0.44022	7.42E-07
-0.44815	7.42F-07
-0 45609	7 42F-07
-0 46402	7.42E-07
-0 47195	7.42E 07
0.47195	7.4107
-0.47909	7.410-07
-0.48782	7.41E-07
-0.49576	7.41E-07
-0.50369	7.40E-07
-0.51163	7.40E-07
-0.51956	7.40E-07
-0.5275	7.38E-07
-0.5275 -0.53543	7.38E-07 7.39E-07
-0.5275 -0.53543 -0.54337	7.38E-07 7.39E-07 7.38E-07

-0.55923	7.37E-07
-0.56717	7.37E-07
-0.5751	7.36E-07
-0.58304	7.36E-07
-0.59097	7.35E-07
-0.59891	7.35E-07
-0.60684	7.34E-07
-0.61478	7.33E-07
-0.62271	7.33E-07
-0.63065	7.32E-07
-0.63858	7.31E-07
-0.64651	7.30E-07
-0.65445	7.30E-07
-0.66238	7.29E-07
-0.67032	7.28E-07
-0.67825	7.27E-07
-0.68619	7.26E-07
-0.69412	7.25E-07
-0.70206	7.24E-07
-0.70999	7.23E-07
-0.71793	7.22E-07

VII. Computational details

The geometric parameters of model anions L⁻ were fully optimized in the gas phase at the B3LYP/6-31G(d,p) theoretical level using Gaussian16 without constrictions for Mesnac₂⁻, ¹⁶Fnac₂⁻ and with constrictions to C₆F₅ torsion angles for ¹⁷Fnac₂⁻. The stationary points were characterized as true minima on the potential energy surface by vibrational analysis (the number of imaginary frequencies (NImag) was equal to zero) and the structures obtained were used for the subsequent calculations. The natural bond orbital analysis (NBO)^[2] was performed at the B3LYP/6-31G(d,p)^[3-6] theoretical level as implemented in Gaussian16.^[7,8]

Fig S32: Graphical illustration of NBO interactions with the obtained interaction energies for $^{17}\rm{Fnac}_2\rm{CuC}_6\rm{H}_6.$

Fig S33: Graphical illustration of NBO interactions with the obtained interaction energies for ¹⁶Fnac₂CuCO.

Fig S34: Graphical illustration of NBO interactions with the obtained interaction energies for ¹⁷Fnac₂CuCO.

Table S5: Cartesian coordinates (x,y,z) for the optimized geometry of model anion Mesnac₂⁻.

С	-2.740953	-0.016015	0.000273
С	-3.365691	-0.396758	-1.219261
С	-4.577846	-1.088876	-1.194478
Н	-5.040336	-1.365834	-2.142566
С	-5.212353	-1.443249	0.001641
С	-4.57872	-1.085081	1.196995
Н	-5.041925	-1.359072	2.145586
С	-3.366519	-0.392843	1.220492
С	-2.688091	-0.051616	2.523473
Н	-2.707466	1.026134	2.731366
Н	-1.629511	-0.329612	2.48056
Н	-3.164894	-0.563443	3.366904
С	-2.686244	-0.05968	-2.522791
Н	-3.162669	-0.573832	-3.365016
Н	-1.627792	-0.337931	-2.478312
Н	-2.705046	1.017455	-2.733861
С	-6.504831	-2.227431	0.002322
Н	-7.116807	-1.995275	-0.877218
Н	-7.107319	-2.008367	0.891616
Н	-6.334952	-3.314129	-0.006812
С	-1.277042	1.865095	-0.00232
С	-2.469233	2.828731	-0.004073
Н	-3.104214	2.659466	-0.881783
Н	-2.151394	3.87489	-0.005362
Н	-3.10492	2.661811	0.873572
С	0.001509	2.475075	-0.003118
С	1.279174	1.863223	-0.002372

С	2.472873	2.824965	-0.004015
Н	3.108489	2.656465	0.873385
Н	2.156858	3.871667	-0.004775
Н	3.107329	2.654904	-0.88201
С	2.740979	-0.018796	0.000177
С	3.362894	-0.401759	1.220405
С	4.571494	-1.100302	1.197142
Н	5.029095	-1.383424	2.145723
С	5.206595	-1.456337	0.001877
С	4.571016	-1.103907	-1.194294
Н	5.028242	-1.389909	-2.142199
С	3.362473	-0.40546	-1.219182
С	2.677776	-0.076955	-2.522105
Н	1.618857	-0.352256	-2.4709
Н	3.149497	-0.598115	-3.362679
Н	2.698292	0.99864	-2.740866
С	2.678737	-0.069338	2.522624
Н	3.150204	-0.588728	3.364434
Н	1.619586	-0.3439	2.472284
Н	2.700206	1.006791	2.73867
С	6.533916	-2.179715	0.002612
Н	7.388382	-1.486771	-0.005479
Н	6.641094	-2.824663	-0.877335
Н	6.646938	-2.811494	0.891282
Ν	-1.488734	0.568226	-0.000285
Ν	1.489077	0.566093	-0.000518
Н	0.002313	3.560479	-0.004733
Table S6: Cartesian	coordinates (x,y,z) for the optimized g	eometry of model anion	¹⁶ Fnac ₂ ⁻ .
F	-3.242908	2.33428	-1.045746
F	-3.263855	2.251452	1.127997

F	-3.242908	2.33428	-1.045746
F	-3.263855	2.251452	1.127997
F	-2.154419	3.812721	0.109772
F	3.263869	2.251354	-1.128311
F	3.24292	2.334422	1.045419
F	2.154415	3.812733	-0.11026
F	-2.892991	-0.182829	-2.311859
F	-5.114723	-1.723076	-2.34664
F	-6.126091	-2.753819	-0.017495
F	-4.881979	-2.189067	2.357638
F	-2.660338	-0.648963	2.408289
F	2.660239	-0.649799	-2.408263
F	4.881874	-2.189869	-2.357183
F	6.126087	-2.753835	0.018097
F	5.114795	-1.722333	2.346933
F	2.893056	-0.182118	2.311738
Ν	-1.453661	0.265454	0.062861

Ν	1.453689	0.265468	-0.063149
С	-1.254173	1.556505	0.035954
С	0.00009	2.195689	-0.000148
С	1.254189	1.55652	-0.036243
С	-2.469567	2.497385	0.056456
С	2.469578	2.497405	-0.056799
С	-2.68017	-0.361294	0.049138
С	-3.355225	-0.671881	-1.148537
С	-4.500983	-1.459155	-1.176331
С	-5.018262	-1.985298	0.003497
С	-4.381026	-1.697651	1.20717
С	-3.23601	-0.909795	1.222337
С	2.680178	-0.361284	-0.049209
С	3.235961	-0.910211	-1.222242
С	4.380978	-1.698063	-1.206857
С	5.01826	-1.985315	-0.003115
С	4.501028	-1.45877	1.176555
С	3.355275	-0.671503	1.148546
Н	0.000001	3.272543	-0.000158

Table S7: Cartesian coordinates (x,y,z) for the optimized geometry of model anion ¹⁷Fnac₂⁻.

		e ,	
F	3.516719	1.688123	-0.940703
F	1.98229	3.023006	-1.637785
F	2.713598	3.180347	0.411326
F	0.034364	3.315155	-0.026231
F	-2.529446	3.116947	-0.820333
F	-3.593893	1.911316	0.631294
F	-2.137784	3.340746	1.31469
F	3.521675	0.605355	1.934071
F	5.837574	-0.792628	1.956669
F	6.32719	-2.704339	0.057967
F	4.435832	-3.213303	-1.863186
F	2.061024	-1.858585	-1.840515
F	-2.640452	-1.404685	2.450112
F	-4.93816	-2.797397	2.108482
F	-6.291535	-2.670996	-0.270093
F	-5.300674	-1.124328	-2.305504
F	-2.991011	0.248892	-1.966034
Ν	1.46658	0.033534	0.073196
Ν	-1.469281	0.081748	0.373737
С	1.271292	1.319087	-0.097012
С	0.016049	1.937821	0.071612
С	-1.262234	1.372356	0.255188
С	2.375357	2.306699	-0.561362
С	-2.382682	2.438539	0.337808
С	2.714482	-0.564711	0.029275
С	3.712059	-0.346162	1.000395
С	4.910445	-1.049348	1.013395

С	5.167533	-2.017265	0.045818
С	4.206359	-2.270967	-0.929178
С	3.01675	-1.555323	-0.928623
С	-2.759804	-0.504172	0.25169
С	-3.274257	-1.326634	1.268489
С	-4.455571	-2.040894	1.104161
С	-5.148973	-1.976622	-0.102151
С	-4.647276	-1.182967	-1.129304
С	-3.467343	-0.469372	-0.942964
Table S8: Cartesian coo	rdinates (x,y,z) for the optimized	geometry of ¹⁷ Fnac ₂ CuC ₆ H	l ₆ .
Cu	-0.00009	-0.661784	-0.356327
F	2.451439	3.557223	1.105172
F	3.641612	2.379397	-0.269078
F	2.260464	3.831054	-1.053838
F	-2.451959	3.55699	1.104811
F	-3.641756	2.379214	-0.269853
F	-2.260538	3.831042	-1.054131
F	-0.000157	3.81744	0.097774
F	2.876959	0.462036	2.17276
F	5.228846	-0.879574	2.414256
F	6.357558	-2.065519	0.226486
F	5.106732	-1.908071	-2.200332
F	2.751721	-0.590217	-2.436421
F	-2.87708	0.462567	2.172474
F	-5.228861	-0.879174	2.414344
F	-6.357469	-2.065824	0.2269
F	-5.106664	-1.908929	-2.199959
F	-2.751787	-0.590921	-2.436429
Ν	1.479712	0.572388	-0.246323
Ν	-1.479819	0.572319	-0.246635
С	1.278832	1.881578	-0.116819
С	-0.000108	2.461781	-0.053008
С	-1.279005	1.881519	-0.117056
С	2.424171	2.922693	-0.077072
С	-2.424396	2.922574	-0.0775
С	2.762789	-0.010587	-0.139042
С	3.420762	-0.116129	1.091893
С	4.622888	-0.80213	1.225059
С	5.199266	-1.409883	0.110196
С	4.561304	-1.327973	-1.125975
С	3.359119	-0.634962	-1.237717
С	-2.762843	-0.010719	-0.139191
С	-3.420839	-0.115944	1.091771
С	-4.622908	-0.802012	1.225128
С	-5.199236	-1.410121	0.110428
С	-4.561279	-1.328508	-1.125752
С	-3.359154	-0.635425	-1.237692

С	-0.714381	-2.533534	-0.684259
Н	-1.251629	-2.408323	-1.620899
С	-1.402895	-3.107555	0.423533
Н	-2.48666	-3.161475	0.402985
С	-0.707065	-3.602182	1.506609
Н	-1.244185	-4.028186	2.348403
С	0.708117	-3.602184	1.506348
Н	1.245545	-4.028206	2.347936
С	1.403531	-3.107522	0.423029
Н	2.487289	-3.161387	0.402092
С	0.714599	-2.53347	-0.684488
Н	1.25152	-2.408063	-1.621297

Table S9: Cartesian coordinates (x,y,z) for the optimized geometry of ¹⁶Fnac₂CuCO.

		o , <u>-</u>	
Cu	-0.000033	-0.853792	-0.000007
F	-2.103512	3.927592	0.161582
F	-3.228015	2.370145	1.166406
F	-3.238987	2.500941	-1.010203
F	2.10358	3.927597	-0.159376
F	3.23921	2.500019	1.011123
F	3.227824	2.370857	-1.165603
F	-2.676619	-0.505967	2.357411
F	-5.086314	-1.757739	2.357071
F	-6.433202	-2.128057	0.010223
F	-5.35814	-1.22923	-2.333924
F	-2.949061	0.021771	-2.332615
F	2.948486	0.019382	2.33286
F	5.357597	-1.231683	2.333486
F	6.43324	-2.128015	-0.0113
F	5.086987	-1.755168	-2.358137
F	2.677291	-0.503404	-2.357774
0	-0.000328	-3.771612	-0.001356
Ν	-1.460114	0.372608	0.01472
Ν	1.460102	0.372546	-0.014326
С	-1.256403	1.686601	0.028846
С	0.000017	2.305214	0.00044
Н	0.00005	3.381792	0.000652
С	1.256409	1.68655	-0.028114
С	-2.465194	2.635747	0.086101
С	2.465227	2.635685	-0.084935
С	-2.76829	-0.181872	0.016605
С	-3.335617	-0.662412	1.200979
С	-4.564797	-1.313984	1.208944
С	-5.252433	-1.504468	0.011765
С	-4.704162	-1.043272	-1.182971
С	-3.472639	-0.394027	-1.17252
С	2.768308	-0.181911	-0.016596
С	3.472357	-0.395293	1.172495

С	4.70387	-1.044527	1.182585
С	5.252464	-1.50444	-0.012514
С	4.565164	-1.312666	-1.209666
С	3.33596	-0.661111	-1.201333
С	-0.000184	-2.625876	-0.000685
Table S10: Cartesian c	coordinates (x,y,z) for the optimized	geometry of ¹⁷ Fnac ₂ CuCC).
Cu	0.000034	-0.918495	-0.000746
0	-0.001173	-3.838314	-0.000654
С	-2.370233	2.644366	0.575668
Ν	-1.457628	0.315437	0.157691
F	0.000047	3.580916	-0.000296
F	3.501963	2.041097	-0.988396
С	0.000066	2.219798	-0.000275
F	2.678445	3.421473	0.472741
С	-1.258436	1.631396	0.216755
Ν	1.457684	0.315378	-0.158281
F	-6.314247	-2.376777	-0.16746
С	1.258571	1.631389	-0.217094
F	-1.970104	3.427774	1.591417
С	-2.736032	-0.281247	0.11554
F	-2.678614	3.421544	-0.472371
С	2.370513	2.644375	-0.575519
F	1.970778	3.42788	-1.591346
С	-4.863389	-0.704119	-1.000258
F	-4.536074	-2.961558	1.823923
С	-5.162618	-1.707305	-0.079679
F	-2.195031	-1.615959	1.999218
С	-4.256335	-2.00242	0.936367
F	-3.38636	0.94655	-1.797678
С	-3.057761	-1.301676	1.017515
F	-5.726086	-0.418658	-1.979745
С	2.736085	-0.281303	-0.115657
F	3.385576	0.946187	1.798049
С	3.058194	-1.301618	-1.017637
F	5.72523	-0.419027	1.980917
С	4.256738	-2.002353	-0.936075
F	6.314164	-2.376875	0.168574
С	5.162583	-1.707376	0.080407
F	4.536884	-2.961393	-1.823599
С	4.862968	-0.704329	1.001001
F	2.195912	-1.615746	-1.999775
С	-0.000592	-2.693569	-0.000907
С	3.661211	-0.012858	0.902008
F	-3.501548	2.041041	0.988957
С	-3.6616	-0.012661	-0.90169

VIII. References

[1] K. Huse, C. Wölper and S. Schulz, Eur. J. Inorg. Chem., 2018, 3472.

[2] A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899.

[3] A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

[4] C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785.

[5] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200.

[6] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.

[7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016].using NBO 6. [E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (2013).

[8] J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211.