Supporting Information

Modulating the regioselectively of solid-state photodimerization in coordination polymers crystals[†]

Fei-Long Hu,^{*a,c} Zhen Qin,^a Meng-Fan Wang, ^a Xue Wan Kang, ^a Yong-Li Qin, ^a Yong Wang, ^a Shu-Li Chen, ^a David James Young,^{*b} Yan Mi^a

^[a] Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, People's Republic of China

^[b] College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909,

Australia

^[c] Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, P.R. China.

Table of contents

General methods	3
Synthesis	3
Figure S1. ¹ H NMR spectrum of 1 (d_6 -DMSO)	4
Figure S2. ¹ H NMR spectrum of 2 (d_6 -DMSO)	4
Figure S3. ¹ H NMR spectrum of 3 (d_6 -DMSO)	5
Figure. S4. PXRD spectra of (<i>a</i>)-1, (<i>b</i>)-2, (<i>c</i>)-3.	8
Figure S5. Thermogravimetric analyses of (<i>a</i>)-1, (<i>b</i>)-2, (<i>c</i>)-3.	9
Figure S6. Infrared spectroscopy of (<i>a</i>)-1, (<i>b</i>)-2, (<i>c</i>)-3.	.11
Figure S7. Crystal structure showing the arrangement of 1,4-bpeb in 1	.11
Figure S8. Coordination environment of Cd ions in compound 1.	.12
Figure S9. ¹ H NMR spectrum of (a)-1a, (b)- p CP.	.13
Figure S10. ¹ H NMR spectrum of (a) - 2a , (b) - bpbpvpcb	.14
Figure S11. ¹ H NMR spectrum of 3a	.14
Figure S12. ¹ H-NMR spectra of (a)-1, (b)-2, (c)-3 in DMSO-d6 subjected to	UV
irradiation at different time intervals. The photodimerization was monitored	by
comparing ¹ H-NMR cyclobuytl signals.	.16

Experimental General methods Synthesis

The ligand 1,4-bis[2-(4-pyridyl)ethenyl]benzene (1,4-bpeb) was prepared according to a literature method.^{S1} Other reagents and chemicals were obtained commercially and used without further purification. Deionized water (distilled) was used throughout the experiments. Elemental analyses (C, H, and N) were performed using a PE 2400 II elemental analyzer. Mass spectra were recorded on a Bruker micr OTOF-Q III mass spectrometer. NMR spectra were recorded at ambient temperature on a Bruker AVANCE 400M spectrometer. ¹H NMR chemical shifts were referenced to the solvent signal in CDCl₃ or DMSO-*d*₆. ¹³C-NMR spectra were recorded at a resonance frequency of 101.6 MHz on a Bruker AVANCE 400M spectrometer. IR spectra were recorded on a Varian 1000 FT–IR spectrometer as KBr disks (4000-400 cm⁻¹). Photo-irradiation experiments were conducted with a high-pressure mercury lamp at a wavelength of 365 nm. Fluorescence spectra were collected on a JASCO FP-6500.

X-ray data collection and structure determination. Single-crystal X-ray diffraction data for 1, 2, 3, 1a, 2a and 3a were recorded on a Bruker Smart CCD diffractometer or Agilent Xcalibur E with a graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 293K. Structures were solved by Direct methods and refined by full-matrix least-squares techniques using the *SHELXL*-2014, *SHELXL*-2017 and *SHELXL*-2018 program.^{S2} Non-hydrogen atoms were refined with anisotropic displacement parameters.

Figure S2. ¹H NMR spectrum of **2** (d_6 -DMSO).

Figure S3. ¹H NMR spectrum of **3** (d_6 -DMSO).

(*b*)

(d)

(*e*)

(f) Figure. S4. PXRD spectra of (a)-1, (b)-2, (c)-3, (d)-1a, (e)-2a, (f)-3a.

(*c*) Figure S5. Thermogravimetric analyses of (*a*)-1, (*b*)-2, (*c*)-3.

(*a*)

(b)

Figure S7. Crystal structure showing the arrangement of 1,4-bpeb in 1.

Figure S8. Coordination environment of Cd ions in compound 1.

Figure S11. ¹H NMR spectrum of **3a**.

Figure S12. ¹H-NMR spectra of (**a**)-**1**, (**b**)-**2**, (**c**)-**3** in DMSO-*d6* subjected to UV irradiation at different time intervals. The photodimerization was monitored by comparing ¹H-NMR cyclobuytl signals.