Electronic supplementary information

An unusual high-frequency ferroelectric via a strategy of post-

synthetic modified metal-organic frameworks

Meiying Liu, Jingjing Liang, Xuebin Xu and Zhiliang Liu^{*} Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.*Corresponding author. Fax/ Tel: +86–471–4992261 E–mail addresses: cezlliu@imu.edu.cn

Contents

- Fig. S1 Drawing of the ligand.
- Fig. S2 Coordinated environment of Cd²⁺ and connection type between metal ions.
- Fig. S3 The simulation and PXRD patterns for Cd-MOF.

Fig. S4 EDX mapping of (CH₃)₂NH·HCl@Cd-MOF.

Fig. S5 TGA curves of Cd-MOF and (CH₃)₂NH·HCl@Cd-MOF.

Figure S6 Leakage curves of (CH₃)₂NH·HCl@Cd-MOF.

Fig. S7 Dielectric constant of $(CH_3)_2NH \cdot HCl@Cd-MOF$ under different frequency in the temperature of 30–270°C.

Fig. S8 DSC curves of Cd-MOF and (CH₃)₂NH·HCl@Cd-MOF.

Table S1 Crystal data and structure refinement of Cd-MOF.

Table S2 Selected bond lengths [Å] and angles [°] for Cd-MOF.

Table S3 Selected hydrogen bond lengths [Å] for Cd-MOF.

Table S4 The list of frequency, remnant polarity (P_r) and coercive field (E_c) in

molecule ferroelectrics.

Fig. S2 Coordinated environment of Cd²⁺ and connection type between metal ions.

Fig. S3 The simulation and PXRD patterns for Cd-MOF.

Fig. S4 EDX mapping of (CH₃)₂NH·HCl@Cd-MOF.

Fig. S5 TGA curves of Cd-MOF and (CH₃)₂NH·HCl@Cd-MOF.

Fig. S6 Leakage curves of (CH₃)₂NH·HCl@Cd-MOF.

Fig. S7 Dielectric constant of (CH₃)₂NH·HCl@Cd-MOF under different frequency in the

Fig. S8 DSC curves of Cd-MOF and (CH₃)₂NH·HCl@Cd-MOF.

Name	Cd-MOF
Empirical formula	$C_{68}H_{69}Cd_4N_8O_{24}$
Formula weight	1831.91
Temperature/K	293.15
Wavelength/Å	0.71073
Crystal system	Monoclinic
space group	C2
a/Å	25.895(2)
b/Å	26.301(2)
c/Å	12.2932(11)
α/°	90

Table S1 Crystal data and structure refinement of Cd-MOF.

β/°	91.478(4)
$\gamma/^{\circ}$	90
Volume/Å ³	8369.7(13)
Z	4
$\rho_{calc}mg/cm^3$	1.4504
Absorption coefficient/mm ⁻¹	1.074
F(000)	3668
Crystal size/ mm ³	0.03 x 0.02 x 0.01
Theta range for data collection/°	2.95 to 25.02
	-30<=h<=30
Index ranges	-31<=k<=31
	-14<=1<=14
Reflections collected	148974
Independent reflections	14755 [R(int) = 0.0543]
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6435
Refinement method	Full-matrix least-squares on F ²
Data/restraints / parameters	14755 / 21 / 960
Goodness-of-fit on F ²	1.051
Final R indices [I>2sigma(I)]	$R_1 = 0.0563, wR_2 = 0.1536$
R indices (all data)	$R_1 = 0.0578, wR_2 = 0.1552$
Absolute structure parameter	0.05(4)
Largest diff. peak/hole / e Å ⁻³	2.93 and -1.59

Table S2 Selected bond lengths [Å] and angles [°] for Cd-MOF.

Bond lengths (Å) Bond angles (°)				
Cd(1)-O(3)#1	2.507(9)	Cd(3)-N(5)	2.387(11)	
Cd(1)-N(1)#1	2.282(10)	Cd(3)-N(6)	2.307(11)	
Cd(1)–O(2)	2.260(8)	Cd(3)–O(15)	2.446(10)	
Cd(1)-O(2)#1	2.279(8)	Cd(3)-O(14)	2.264(8)	
Cd(1)-O(8)	2.334(9)	Cd(3)-O(10)	2.299(7)	
Cd(1)-N(2)	2.390(10)	Cd(3)-O(19)	2.354(9)	
Cd(2)-N(3)	2.420(7)	Cd(4)-O(17)#3	2.398(9)	
Cd(2)-O(6)#2	2.410(9)	Cd(4)-O(23)#4	2.465(9)	

Cd(2)-O(11)	2.442(9)	Cd(4)-O(22)	2.256(7)	
Cd(2)-O(14)	2.275(8)	Cd(4)-O(22)#4	2.271(8) 2.381(10) 2.282(11)	
Cd(2)-O(10)	2.275(8)	Cd(4)-N(7)		
Cd(2)-N(4)	2.300(11)	Cd(4)-N(8)#4		
	В	ond angles (°)		
N(1)#1-Cd(1)-O(3)#1	71.7(3)	N(5)-Cd(3)-O(15)	89.4(3)	
N(1)#1-Cd(1)-O(8)	86.4(4)	N(6)-Cd(3)-N(5)	86.0(4)	
N(1)#1-Cd(1)-N(2)	96.3(4)	N(6)-Cd(3)-O(15)	71.7(3)	
O(2)-Cd(1)-O(3)#1	136.5(3)	N(6)-Cd(3)-O(19)	96.9(4)	
O(2)#1-Cd(1)-O(3)#1	149.7(3)	O(14)-Cd(3)-N(5)	97.9(4)	
O(2)#1-Cd(1)-N(1)#1	80.3(3)	O(14)-Cd(3)-N(6)	80.8(3)	
O(2)-Cd(1)-N(1)#1	143.7(3)	O(14)-Cd(3)-O(15)	152.5(3)	
O(2)-Cd(1)-O(2)#1	73.7(3)	O(14)-Cd(3)-O(10)	74.3 (3)	
O(2)#1-Cd(1)-O(8)	109.7(3)	O(14)-Cd(3)-O(19)	106.6(3)	
O(2)-Cd(1)-O(8)	79.2(3)	O(10)-Cd(3)-N(5)	105.4(3)	
O(2)#1-Cd(1)-N(2)	86.8(3)	O(10)-Cd(3)-N(6)	152.0(3)	
O(2)-Cd(1)-N(2)	106.9(3)	O(10)-Cd(3)-O(15)	132.5 (3)	
O(8)-Cd(1)-O(3)#1	80.2(3)	O(10)-Cd(3)-O(19)	78.5(3)	
O(8)-Cd(1)-N(2)	163.5(4)	O(19)-Cd(3)-N(5)	165.5(4)	
N(2)-Cd(1)-O(3)#1	85.2(3)	O(19)-Cd(3)-O(15)	78.1(3)	
N(3)-Cd(2)-O(11)	87.1(2)	O(17)#3-Cd(4)-O(23)#4	80.7(3)	
O(6)#2-Cd(2)-N(3)	162.0(4)	O(22)-Cd(4)-O(17)#3	77.8(3)	
O(6)#2-Cd(2)-O(11)	77.3(3)	O(22)#4-Cd(4)-O(17)#3	108.9(3)	
O(14)-Cd(2)-N(3)	107.3(3)	O(22)#4-Cd(4)-O(23)#4	150.9 (3)	
O(14)-Cd(2)-O(6)#2	77.9(3)	O(22)-Cd(4)-O(23)#4	134.3(3)	
O(14)-Cd(2)-O(11)	132.8(3)	O(22)-Cd(4)-O(22)#4	74.7(3)	
O(14)-Cd(2)-O(10)	74.6(3)	O(22)-Cd(4)-N(7)	106.1(3)	
O(14)-Cd(2)-N(4)	151.4(4)	O(22)#4-Cd(4)-N(7)	87.1(3)	
O(10)-Cd(2)-N(3)	88.9(3)	O(22)#4-Cd(4)-N(8)#4	80.9(3)	
O(10)-Cd(2)-O(6)#2	109.1(3)	O(22)-Cd(4)-N(8)#4	145.2(3)	
O(10)-Cd(2)-O(11)	152.0(3)	N(7)-Cd(4)-O(17)#3	164.0(4)	
O(10)-Cd(2)-N(4)	80.9(3)	N(7)-Cd(4)-O(23)#4	85.9(3)	
N(4)-Cd(2)-N(3)	86.6(4)	N(8)#4-Cd(4)-O(17)#3	87.2(4)	
N(4)-Cd(2)-O(6)#2	96.7(4)	N(8)#4-Cd(4)-O(23)#4	72.0(3)	
N(4)-Cd(2)-O(11)	71.2(3)	N(8)#4-Cd(4)-N(7)	96.9(4)	

Table S3 Selected hydrogen bond lengths [Å] for Cd-MOF.

D	А	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th></dha<>	d(DA)
03	O7 #2	0.83(3)	2.28(12)	116(11)	2.748(12)
O23	O18#1	0.83(3)	1.95(10)	142(15)	2.653(12)
D: Donor; A	: Acceptor				

Symmetry transformations used to generate equivalent atoms: #1: 2-x,y,1-z #2: -1/2+x, 1/2+y, z #3: x -1/2, y-1/2, z #4: 1-x,y,1-z

Table S4 The list of frequency, remnant polarity (Pr) and coercive field (Ec) in molecule ferroelectrics.

Compounds	f/Hz	$P_r/\mu C \cdot cm^{-2}$	$E_c/kV \cdot cm^{-1}$	Ref.
(CH ₃) ₂ NH·HCl@Cd–MOF	1000	0.17	1.88	This work
$\label{eq:ch3NH3} {}^a(CH_3NH_3)_{12}\{Cu^{II}_{24}[(S,S)\text{-}hismox]_{12}(OH_2)_3\}\cdot 178H_2O$	10-200	1.06	_	1
[Nd(C ₄ H ₅ O ₆)(C ₄ H ₄ O ₆)][3H ₂ O]	50	0.2	-	2
${}^{b}R$ - [Zn ₄ (HL) ₂ (L) ₂ (CH ₃ OH) ₂](NO ₃) ₂	100	6.3	1.49	3
°[Cd(Imazethapyr) ₂]	200	0.006	1.1	4
$[Cu_{3}(4,4-bpy)_{5}]_{2}[H_{2}SiW_{11}O_{39}]\cdot 5H_{2}O$	200	0.015	2.2	5
${}^d[Cu_2L_4(H_2O)_2]\cdot(ClO_4)_4\cdot(H_2O)_5\cdot(CH_3OH)$	0.1	_	16	6
${}^{d}[Cu_{3}L_{6}(H_{2}O)_{3}]\cdot(ClO_{4})_{5}\cdot(NO_{3})\cdot(H_{2}O)_{11}$	0.1	_	30	6
$^{\rm e}\{[{\rm Zn}({\rm TBPR}) \subset 0.25({\rm HClO_4})](0.25{\rm HClO_4})\}n$	500	1.8	2.5	7
^f PD–DMACoF	50	_	_	8
$[R,R-ZnLDy(\mu-OAc)(NO_3)_2]$	1	_	17	9
$^{h}(DAMP)_{3}(Cu_{4}Br_{4})_{2}(H_{2}O)_{3}$	12	2.5	1.0	10

 $\label{eq:harder} {}^{a}H_{2}Me_{2}-(S,S)-hismox = bis[(S)-histidine]oxalyl diamide, {}^{b}H_{2}L = 2-[(1-benzyl-2-hydroxy-ethylimino)-me-thyl]-6-methoxy-phenol), {}^{c}H-Imazethapyr = 2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H -imidazol-2-yl)-5-ethyl-3-pyridine-carboxylic acid, {}^{d}L=PhPO(NH-3-pyridyl)_{2}, {}^{e}TBPR = (S)-N-2-tetrazoylbenzylproline, {}^{P}D-DMA = perdeuterodimethylammonium, {}^{g}H_{2}L=phenol,2,2-[2,2-diphenyl-1,2-ethanediyl]bis[(E)-nitrilomethyl-idyne]-bis(6-methoxy), {}^{h}DAMP = (S)-1,4-diallyl-2-methylpiperazine$

References

- 1 Mon, M.; Ferrando-Soria, J.; Verdaguer, M.; Train, C.; Paillard, C.; Dkhil, B.; Versace, C.; Bruno, R.; Armentano, D.; Pardo, E., Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal-Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 8098-8101.
- 2 Ahmad, B. Z.; Want, B., Structure, Ferroelectric Ordering, and Semiempirical Quantum Calculations of Lanthanide Based Metal-Organic Framework: [Nd(C₄H₅O₆)(C₄H₄O₆)][3H₂O]. J. Appl. Phys. 2016, **119**, 144104.
- 3 Yu, H.; Liu, M.; Gao, X.; Liu, Z., Construction and Crystal Structure of a Pair of Tetranuclear Zn(II) Chiral Clusters that Exhibit Ferroelectric Behavior Under a Higher Rrequency Electric Field at Room Temperature. *Polyhedron* 2017, **137**, 217-221.

- 4 Fu, D. W.; Zhang, W.; Xiong, R. G., The First Metal-Organic Framework (MOF) of Imazethapyr and Its SHG, Piezoelectric and Ferroelectric Properties. *Dalton Trans.* 2008, 3946-3948.
- 5 Zheng, S. T.; Yang, G. Y., The First Polyoxometalate-Templated Four-Fold Interpenetrated Coordination Polymer with New Topology and Ferroelectricity. 2010, **39**, 700-703.
- 6 Srivastava, A. K.; Praveenkumar, B.; Mahawar, I. K.; Divya, P.; Shalini, S.; Boomishankar, R., Anion Driven [Cu^{II}L₂]n Frameworks: Crystal Structures, Guest-Encapsulation, Dielectric, and Possible Ferroelectric Properties. *Chem. Mater.* 2014, 26, 3811-3817.
- 7 Hang, T.; Fu, D.-W.; Ye, Q.; Ye, H.-Y.; Xiong, R.-G.; Huang, S. D., Tanklike Metal–Organic Framework Filled with Perchloric Acid and Its Dielectric–Ferroelectric Properties. *Cryst. Growth Des.* 2009, 9, 2054-2056.
- 8 Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T., A Multiferroic Perdeutero Metal-Organic Framework. *Angew. Chem. Int. Ed.* 2011, **50**, 11947-11951.
- 9 Long, J.; Rouquette, J.; Thibaud, J. M.; Ferreira, R. A.; Carlos, L. D.; Donnadieu, B.; Vieru, V.; Chibotaru, L. F.; Konczewicz, L.; Haines, J.; Guari, Y.; Larionova, J., A High-Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Single-Ion-Magnet behavior and lanthanide luminescence. *Angew. Chem. Int. Ed.* 2015, **54**, 2236-2240.
- 10 Zhang, W.; Xiong, R.-G.; Huang, S. D., 3D Framework Containing Cu₄Br₄ Cubane as Connecting Node with Strong Ferroelectricity. J. Am. Chem. Soc. 2008, 130, 10468-10469.