Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Bi(nanoparticles)/CN_x(nanosheets) nanocomposites as high capacity and

stable electrode materials for supercapacitors: the role of urea

Denys S. Butenko,^a Xinyu Zhang,^{b,c} Igor V. Zatovsky,^{d*} Igor V. Fesych,^e ShilinLi,^a Ruoyu Chen,^a Marian Chufarov,^a Oleksii Symonenko,^a N.I. Klyui,^{d,f*} and Wei Han^{a*}

^a Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin university, Changchun 130012, P.R. China. ^b Innovation Center of Computational Physics Methods and Software & State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China. ^cGeophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA. ^d College of Physics, Jilin University, 2699 Qianjinst., Changchun 130012, P.R. China. ^e Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska st.,64/13, 01601, Kyiv, Ukraine. ^fV. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 pr. Nauki, 03028 Kyiv, Ukraine. Corresponding author *E-mail address*: zvigo@yandex.ru (I.V. Zatovsky) *E-mail address*: klyuini@ukr.net (N.I. Klyui) *E-mail address*:whan@jlu.edu.cn (W. Han)

Section"Electrochemical tests"

The specific capacitance (S_c) value of BU-C/NF and NiLH-C/NF electrodes were calculated from the galvanostatic charge-discharge GCD curves according to the following equation:

$$S_c = (I \cdot \Delta t) / (m \cdot \Delta V), \tag{S1}$$

where *I* is the discharge current, Δt is discharge time, *m* is the mass of the active material and ΔV is the potential window.

The energy density (S_E) and power density (S_P) of BU-C/NF//NiLH-C/NF supercapacitor was calculated using the following equations:

$$S_E = (S_c \cdot \Delta V^2) / 7200 \tag{S2}$$

$$S_P = (3600 \cdot S_E) / \Delta t \tag{S3}$$

The electrochemical cell EQ-STC15 (used to test model supercapacitor of BU-C/NF//NiLH-C/NF) has the following features: cell is made full stainless steel SS304; cell thickness 6 mm (cathode + separator + anode), working electrode diameter 15 mm; 6 mm height spacer inside the test cell to press down on the electrode and prevent the electrode from curling; sealed by electrolyte corrosive-proof PTFE O-rings; anti-corrosive Au coating on the cell contacts and inserts.

Figure S1. (a) Spontaneous combustion of the Bi + C composite when exposed to air (sample obtained by annealing pure Bi(cit) at 700 °C in argon atmosphere) and (b) XRD data after oxidation of bismuth and carbon in air (residual amount of metallic bismuth is less than 15 %wt.).

Figure S2. SEM images (a) and EDS (b) for Urea-550 sample.

Figure S3. FTIR spectrum of Urea-550 sample.

Table S1.

Absorptio				
Melem NH2 N N N N N N N N	\mathbf{Melon}	Urea-550	Absorption bands type	
802	805	810	Condensed triazole rings	
976	890	895	C-C and C-N bonds	
1088, 1155	1206	1151		
1255	1236	1241		
1323	1320	1311		
1475	1410, 1465	1422	Condensed triazole rings	
1560		1558	Cyameluric ring	
-	1580	1605		
-	1640	1654	Condensed triazole rings	
2136,2282	-	2177		
2494, 2570	-	-		
2773	-	2832, 2890		
3103	3085	-	Amide (–NH–)	
-	3165, 3250	3184		
3336	-	3323		

Main absorption bands in the FTIR spectra of melem, melon and Urea-550.

Figure S4. Results EDS for BU composites.

Table S2.

Element content and C: N ratio for BU according to EDS.

Sample		C·N ratio			
	С	N	0	Bi	
BU-05-550	30.80	26.59	6.22	36.39	1.35
BU-05-700	36.26	16.24	3.90	43.60	2.61
BU-1-550	30.37	19.34	2.81	47.48	1.83
BU-1-700	31.21	12.93	3.73	52.12	2.81

Figure S5. DG-DTA results for (a) BU-1-550 and (b) BU-05-700 (Insert: Bi₂O₃ obtained after DG-DTA).

Figure S6. Barrett–Joyner–Halenda (BJH) pore size distribution curves of BU composites.

Figure S7. Cyclic voltammograms for (a) BU(05-700)-C/NF and (b) BU(1-550)-C/NF electrodes at different scan rates.

Figure S8. The galvanostatic charge–discharge curves for (a) BU(05-700)-C/NF and (b) BU(1-550)-C/NF electrodes at different current densities.

Figure S9. The equivalent scheme for EIS measurement: R_s – solution resistance, R_{sc} – specific space-charge resistance, R_{ct} – specific charge transfer resistance, Q_1 and Q_2 are the constant phase elements (CPE) for the electrolyte/electrode interface and electrode surface, respectively.

Figure S10. Electrochemical tests for Bi-700-C/NF* electrode: (a) CV curves at different scan rates; (b) galvanostatic charge–discharge curves at different current densities; (c) specific capacitances of the electrode at different current densities;

(d) result AC impedance spectroscopy.

*The Bi-700-C/NF electrode was fabricated by coating strips of nickel foam with active paste, which consists of 85 % wt. electroactive material (prepared from thermally decomposed pure Bi(cit) at 700 $^{\circ}$ C in an Ar atmosphere) with a mixture of 10 % wt. SP carbon and 5 % wt. PTFE. The resulting electrode was dried in vacuum at 60 $^{\circ}$ C for 24 hours.

Figure S11. Elemental mapping for BU(1-700)-C/NF electrode after GCD the process.

Figure S12. Characterization of the obtained nanoparticles Na₄Ni₃P₄O₁₅: (a) XRD result (in comparison with PDF2 #01-087-0977 for Na₄Ni₃(PO₄)₂P₂O₇); (b) SEM image; (c) result EDS.

Figure S13. Study of the NiLH-C/NF electrode after *in situ* conversion of phosphate to 2D-nanosheets Ni(OH)₂ (in a 6 M KOH solution): (a) XRD data;
(b) TEM image (crumbs of electrode material were separated from surface of NF current collector; used transmission electron microscopy by JEOL JSM 2010F, recorded at 200 kV); (c) SEM image for NiLH-C/NF electrode; (d) result EDS; (e) elemental mapping for NiLH-C/NF electrode.

Figure S14. CV curves at different scan rates for NiLH-C/NF electrode: (a) scanning rate from 5 to 15 mV·s⁻¹; (b) scanning rate from 20 to 40 mV·s⁻¹.

Fig. S15. Electrochemical tests for BU-C/NF//NiLH-C/NF device:

(a) galvanostatic charge-discharge curves at different current densities;
 (b) specific capacitances of the supercapacitor at different current densities.