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ADDITIONAL KINETIC DATA 

 

 

Figure S1. Time Profiles for Determination of Order with Respect to Re. 18 was 
dissolved in 0.25 mL (2.46 mmol) benzaldehyde, 0.38 mL (2.49 mmol) 
dimethylphenylsilane, and 0.34 mL (2.46 mmol) mesitylene. The reaction mixture was then 
divided into screw cap NMR tubes at run 80 °C. At each time point deuterated chloroform 
was added to the screw cap NMR tube and the product concentration was determined by 
1H NMR spectroscopy. 
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Figure S2. Plot of kobs vs [Re]. The rhenium complex was dissolved in 0.25 mL (2.46 
mmol) benzaldehyde, 0.38 mL (2.49 mmol) dimethylphenylsilane, and 0.34 mL (2.46 
mmol) mesitylene. The reaction mixture was then divided into screw cap NMR tubes at 
run 80 °C. At each time point deuterated chloroform was added to the screw cap NMR tube 
and the product concentration was determined by 1H NMR spectroscopy. The extracted 
kobs was then plotted against concentration of 18. 
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Figure S3. Time Profiles for Hydrosilylation in Excess Dimethylphenylsilane. The 
rhenium complex was dissolved in 0.125 mL (1.23 mmol) benzaldehyde and the 
appropriate equivalents of dimethylphenylsilane. The resulting solution was then diluted 
to a volume of 4.07 mL with the addition of mestilyene. The reaction mixture was then 
divided into 0.1 mL aliquots and placed into screw cap NMR tubes at run 80 °C. At each 
time point deuterated chloroform was added to the screw cap NMR tube and the product 
concentration was determined by 1H NMR spectroscopy. 
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Figure S4. Kinetic plots for the catalytic hydrosilylation of benzaldehyde and 
dimethylphenylsilane at 80 °C with DAAmRe(CO)(OAc) (0.1 mol%). A) Data are fit to the 
integrated rate equation for a 1st order reaction (ln[PhCHO] (blue)) and a 2nd order reaction 
(1/[PhCHO] (red)). B) Linear fit of the observed rate constant versus the mol% of the rhenium 
catalyst. 



	 S7	

 

 

Figure S5. 1H NMR Time Course of Catalytic Hydrosilylation of Benzaldehyde. The 
rhenium complex was dissolved in 0.125 mL (1.23 mmol) benzaldehyde and 2.83 mL 
(18.45 mmol) dimethylphenylsilane. The resulting solution was then diluted to a volume 
of 4.07 mL with the addition of mestilyene. The reaction mixture was then divided into 0.1 
mL aliquots and placed into screw cap NMR tubes at run 80 °C. At each time point 
deuterated chloroform was added to the screw cap NMR tube and the product concentration 
was determined by 1H NMR spectroscopy. 
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1H NMR SPECTRA OF HYDROSILYLATION PRODUCTS 

 

Figure S6. 1H NMR Spectrum of dimethyl(phenyl)(1-(4-
(trifluoromethyl)phenyl)ethoxy)silane. 1H NMR (Chloroform-d, 600 MHz) δ: 7.37(d, J 
= 8.1 Hz, 2H), 4.86 (q, J = 6.3 Hz, 1H), 1.38 (d, J = 6.4 Hz, 3H). The remaining product 
aryl and Si CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 
7.52, 7.33, and 0.32 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). 
Mesitylene internal standard observed at 6.78 and 2.25 ppm. 
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Figure S7. 1H NMR Spectrum of dimethyl(phenyl)(1-(4-bromophenyl)ethoxy)silane. 
1H NMR (Chloroform-d, 600 MHz) δ: 7.39 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 
4.78 (q, J = 6.3 Hz, 1H), 1.37 (d, J = 6.4 Hz, 3H), 0.33 (s, 6H). The remaining product aryl 
and Si CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 7.53 
and 7.34 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene 
internal standard observed at 6.79 and 2.26 ppm. 
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Figure S8. 1H NMR Spectrum of dimethyl(phenyl)(1-(4-
methoxyphenyl)ethoxy)silane. 1H NMR (Chloroform-d, 600 MHz) δ: 7.20 (d, J = 8.6 Hz, 
2H), 6.81 (d, J = 8.6 Hz, 2H), 4.80 (q, J = 6.3 Hz, 1H), 3.75 (s, 3H), 1.39 (d, J = 6.4 Hz, 
3H), 0.50 (s, 1H), 0.31 (s, 6H). Peaks corresponding to the silyl enol ether are observed in 
a 1:4 ratio with the major product at 4.76 (d, J = 1.6 Hz, 1H), 4.26 (d, J = 1.6 Hz, 1H), 3.76 
(s, 3H), 0.50 (s, 6H). The remaining product aryl and Si CH3 proton signals are obscured 
by residual dimethyl phenyl silane peaks at 7.53 and 7.34 ppm. Residual Si-H peak 
observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene internal standard observed at 6.79 
and 2.26 ppm. 
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Figure S9. 1H NMR Spectrum of dimethyl(phenyl)(1-(4-nitrophenyl)ethoxy)silane. 1H 
NMR (Chloroform-d, 600 MHz) δ: 8.12 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 4.89 
(q, J = 6.4 Hz, 1H), 1.39 (d, J = 6.4 Hz, 3H), 0.33 (s, 6H).The remaining product aryl and 
Si CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 7.53 and 
7.34 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene 
internal standard observed at 6.79 and 2.26 ppm. 
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Figure S10. 1H NMR Spectrum of dimethyl(phenyl)(1-p-tolyl)ethoxy)silane. 1H NMR 
(Chloroform-d, 600 MHz) δ: 7.18 (d, J = 7.8 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 4.81 (q, J 
= 6.2 Hz, 1H), 2.31 (s, 3H), 1.40 (d, J = 6.4 Hz, 3H), 0.32 (s, 6H).The remaining product 
aryl and Si CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 
7.53 and 7.34 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). 
Mesitylene internal standard observed at 6.79 and 2.26 ppm. 
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Figure S11. 1H NMR Spectrum of dimethyl(phenyl)(1-phenylethoxy)silane. 1H NMR 
(Chloroform-d, 600 MHz) δ: 7.42 (t, J = 7.7 Hz, 2H), 7.28 (d, J = 6.9 Hz, 3H), 7.20 (t, J = 
6.7 Hz, 1H), 4.84 (q, J = 6.4 Hz, 1H), 1.41 (d, J = 6.4 Hz, 3H), 0.33 (s, 6H). The remaining 
product aryl and Si CH3 proton signals are obscured by residual dimethyl phenyl silane 
peaks at 7.53 and 7.34 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). 
Mesitylene internal standard observed at 6.79 and 2.26 ppm. 
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Figure S12. 1H NMR Spectrum of dimethyl(phenyl)(2,2,2-trifluoro-1-
phenylethoxy)silane. 1H NMR (Chloroform-d, 600 MHz) δ: 7.57 (d, J = 7.4 Hz, 2H), 4.84 
(q, J3 H-C-C-F = 6.6 Hz, 1H). The remaining product aryl and Si CH3 proton signals are 
obscured by residual dimethyl phenyl silane peaks at 7.53 and 7.34 ppm. Residual Si-H 
peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene internal standard observed at 
6.79 and 2.26 ppm. Unreacted starting material observed at 8.05 and 7.49 ppm. 
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Figure S13. 19F NMR Spectrum of dimethyl(phenyl)(2,2,2-trifluoro-1-
phenylethoxy)silane. 19F NMR (Chloroform-d, 564 MHz) δ: -71.28, -77.99 (d). 
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Figure S14. 1H NMR Spectrum of sec-butoxydimethyl(phenyl)silane. 1H NMR 
(Chloroform-d, 600 MHz) δ: 7.58 (d, J = 5.1 Hz, 2H), 3.71 (m, 1H), 1.42 (m, 2H), 1.09 (d, 
J = 6.1 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H), 0.37 (s, 6H).The remaining product aryl and Si 
CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 7.53 and 7.34 
ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene internal 
standard observed at 6.79 and 2.26 ppm. 
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Figure S15. 1H NMR Spectrum of dimethyl((3-methylbutan-2-yl)oxy)(phenyl)silane. 
1H NMR (Chloroform-d, 600 MHz) δ: 7.58 (d, J = 4.5 Hz, 2H), 3.56 (m, 1H), 1.62 – 1.55 
(m, 1H), 1.04 (d, J = 6.2 Hz, 3H), 0.84 (t, J = 7.1 Hz, 6H), 0.36 (s, 6H).The remaining 
product aryl and Si CH3 proton signals are obscured by residual dimethyl phenyl silane 
peaks at 7.53 and 7.34 ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). 
Mesitylene internal standard observed at 6.79 and 2.26 ppm. Unreacted starting material 
observed at 2.51, 2.08, and 1.07 ppm.  
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Figure S16. 1H NMR Spectrum of ((3,3-dimethylbutan-2-
yl)oxy)dimethyl(phenyl)silane. 1H NMR (Chloroform-d, 600 MHz) δ: 7.58 (d, J = 7.5 
Hz, 4H), 3.47 (q, J = 6.3 Hz, 1H), 1.00 (d, J = 6.3 Hz, 3H), 0.83 (s, 9H), 0.34 (s, 6H).Peaks 
corresponding to the silyl enol ether are observed in a 1:2 ratio with the major product at 
4.06 (s, 1H), 3.89 (s, 1H), 1.11 (s, 9H), 0.44 (s, 3H). The remaining product aryl and Si 
CH3 proton signals are obscured by residual dimethyl phenyl silane peaks at 7.53 and 7.34 
ppm. Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene internal 
standard observed at 6.79 and 2.26 ppm. Unreacted starting material observed at 2.09, and 
1.07 ppm.  
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Figure S17. 1H NMR Spectrum of (cyclohexyloxy)dimethyl(phenyl)silane. 1H NMR 
(Chloroform-d, 600 MHz) δ: 7.58 (m, 2H), 3.59 (m, 1H), 1.75 (m, 2H), 1.67 (m, 2H), 1.46 
(m, 2H), 1.32 (m, 2H), 1.15 (m, 3H), 0.37(s, 6H). The remaining product aryl and Si CH3 
proton signals are obscured by residual dimethyl phenyl silane peaks at 7.53 and 7.34 ppm. 
Residual Si-H peak observed at 4.43 ppm (heptet, J = 3.5 Hz). Mesitylene internal standard 
observed at 6.79 and 2.26 ppm. 
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COMPUTATIONAL DETAILS 

 

Full Gaussian09 Citation 

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. 
E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, 
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; 
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, 
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, 
J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; 
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. 
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; 
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 
Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; 
Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 

 

Computational	Methods.	Theoretical	calculations	have	been	carried	out	using	the	
Gaussian	091	implementation	of	B3PW912,	3	density	functional	theory	with	the	D3	
version	of	Grimme’s	empirical	dispersion	correction.4	All	geometry	optimizations	
were	carried	out	in	the	gas	phase	using	tight	convergence	criteria	(“opt	=	tight”)	and	
pruned	ultrafine	grids	(“Int	=	ultrafine”).	The	basis	set	for	rhenium	was	the	small-
core	(311111,22111,411)	→	[6s5p3d]	Stuttgart-Dresden	basis	set	and	relativistic	
effective	core	potential	(RECP)	combination	(SDD)	with	an	additional	f	polarization	
function.5-18	The	6-31G(d,p)	basis	set19	was	used	for	all	other	atoms.	All	structures	
were	fully	optimized.	Analytical	frequency	calculations	were	performed	on	all	
structures	to	ensure	either	a	zeroth-order	saddle	point,	(a	local	minimum),	or	a	
first-order	saddle	point	(transition	state:	TS)	was	achieved.	The	minima	associated	
with	each	transition	state	were	determined	by	animation	of	the	imaginary	
frequency. 

Energetics were calculated on the gas phase optimized structures as described above with 
the 6-311++G(d,p)20 basis set for C, H, N, O, Si, B, Al, and F atoms and the SDD5-17, 21 
basis set with an added f polarization function18 on Re. Reported energies utilized 
analytical frequencies and the zero point corrections from the gas phase optimized 
geometries. 

 

	 	



	 S21	

 
 
  

-25

-20

-15

-10

-5

0

5

10

15

20

25
Fr

ee
 E

ne
rg

y 
(k

ca
l/

m
ol

)

12
13 14

15
16

17

TS5
7.3

TS6
7.1 TS7

5.4

TS8
18.5

TS9
4.2

NCMe
ReN

N
N

CO

C6F5

C6F5

NCMe

9C6F5

9C6F5

10

11
+ benzaldehyde/acetophenone
- CH3CN

+ 
benzaldehyde/
acetophenone

+ PhMe2SiH
- CH3CN

Silane Activation SN2-SI Hydride Transfer

Figure S18. Comparison of pathways for the catalytic hydrosilylation of acetophenone (black) 
with benzaldehyde with the catalyst [DAAmRe(CO)(NCCH3)2]+ (DAAm =  N,N-bis(2-
arylaminoethyl)methylamine; aryl = C6F5). 



	 S22	

 
 
 
 

-30

-20

-10

0

10

20

30

40

Fr
ee

 E
ne

rg
y 

(k
ca

l/m
ol

)

TS10
10.2

TS11
5.9

TS12
6.6

TS13
36.4

TS14
28.0

+ Benzaldehyde

+ Benzaldehyde

+ Silane

18
19

22 23

20 21

24

25
25’

26

Figure S19. Calculated pathway for catalytic hydrosilylation of with benzaldehyde with the catalyst 
DAAmRe(CO)(OAc) (DAAm =  N,N-bis(2-arylaminoethyl)methylamine; aryl = C6F5).



	 S23	

 

Figure S20. Calculated (B3PW91-D3) Pathway for the Formation of Silyl Enol Ether 
during Catalysis with 18. See experimental section for computational details. 

Summary of computational steps. 

Step 1. Isomerization of 18 from κ2 to κ1 bound acetate 19 

Step 2. Binding of acetophenone to 19 to form 28 

Step 3. η1 activation silane by 19 to generate the FLP 23 

Step 4. SNSi on activated silane FLP 23 by acetophenone to produce the ion pair 30 

Step 5. Isomerization of 30 to 30’ 

Step 6. Hydride transfer to release the product 31 

 Alternate Step 5. Isomerization of 30 to 30’’ 

Alternate Step 6. Deprotonation of an α proton by the rhenium hydride to give the hydrogen 
bound complex 32 

Alternate Step 5. Isomerization of 30 to 30* 

Alternate Step 6. Deprotonation of an α proton by the acetate ligand to give the acetic acid 
bound complex 33 
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Alternate Step 7. Proton transfer from the bound acetic acid to the rhenium hydride to 
produce the hydrogen bound complex 34 
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