Electronic Supporting Information (ESI)

Heterobimetallic propargyl gold complexes with π -bound copper or silver with enhanced anticancer activity

Alice Johnson, Isabel Marzo and M. Concepción Gimeno* Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza. E-50009 Zaragoza, Spain. E-mail: gimeno@unizar.es

Table of Contents

1.	I	Experimental	S3					
	1.1.	Starting Materials	S3					
	1.2.	Instrumentation	\$3					
	1.3.	Crystallography	S3					
	1.4.	Cell culture	S3					
	1.5.	Antiproliferative studies: MTT assay	S3					
	1.6.	Syntheses						
	1.7.	Crystallographic Data						
	1.8.	Stability of Complex 1 - NMR Studies	S20					
	1.9.	NMR Spectra for Complex 1	S22					
	1.10.	NMR Spectra for Complex 2	S23					
	1.11.	NMR Spectra for Complex 3	S26					
	1.12.	NMR Spectra for Complex 4	S29					
	1.13.	NMR Spectra for Complex 5	S32					
	1.14.	NMR Spectra for Complex 6	S35					
	1.15.	NMR Spectra for Complex 7	S38					
	1.16.	NMR Spectra for Complex 8	S41					
	1.17.	NMR Spectra for Complex 9	S44					
	1.18.	VT NMR Complex 9	S47					
	1.19.	NMR Spectra Complex 10	S48					
	1.20.	NMR Spectra Complex 11	S51					
	1.21.	NMR Spectra Complex 12	S54					
	1.22.	NMR Spectra for Complex 13	S57					
	1.23.	NMR Spectra for Complex 14	S60					

1.24.	NMR Spectra for Complex 15	.S63				
1.25.	NMR Spectra for Complex 16	.S66				
1.26.	NMR Spectra for Complex 17	.S69				
1.27.	NMR Spectra for Complex 18	.S72				
1.28.	NMR Spectra for Complex 19	.S75				
1.29.	NMR Stability Studies	.S76				
1.30.	UV-Vis Stability Studies	.S79				
1.31.	Dose Response Curves for MTT Assays	.S83				
Referenc	References					

1. Experimental

1.1. Starting Materials

The starting materials [AuCl(tht)],¹ [AuCl(PPh₃)],² [Au(acac)(PPh₃)],³ [Ag(OTf)(PPh₃)₂],⁴ [Cu(NO₃)(PPh₃)₂],⁵ *N*-propargyl-di(2-picolyl)amine⁶⁻⁷ and *N*-propargylcarbazole⁸ were prepared according to published procedures. 3-Dimethylamino-1-propyne, 1-propargyl-1H-benzotriazole, 3-(allyloxy)-1-propyne, propargylether and phenylpropargyl sulfide were purchased from Sigma-Aldrich and used without further purification. Bis(2-dipyridylmethyl)amine and propargyl bromide were purchased from TCI chemicals and used without further purification. Solvents were dried with a SPS solvent purification system.

1.2. Instrumentation

Mass spectra were recorded on a Bruker Esquire 3000 PLUS, with the electrospray (ESI) technique and on a Bruker Microflex (MALDI-TOF). ¹H, ¹³C{¹H}, ³¹P{¹H} and ¹⁹F NMR, including 2D experiments, were recorded at room temperature on a Bruker Avance 400 spectrometer (¹H 400.0 MHz, ¹³C 100.6 MHz, ³¹P 162.0 MHz, ¹⁹F 376.5 MHz) or on a Bruker Avance II 300 spectrometer (¹H 300.0 MHz, ¹³C 75.5 MHz, ³¹P 121.5 MHz, ¹⁹F 282.3 MHz), with chemical shifts (δ , ppm) reported relative to the solvent peaks of the deuterated solvent. All *J* values are given in Hz. IR spectra were recorded in neat samples in the range 4000-250 cm⁻¹ on a Perkin-Elmer Spectrum 100 FT-IR spectrometer.

1.3. Crystallography

Crystals were mounted in inert oil on glass fibres and transferred to the cold gas stream of an Xcalibur Oxford Diffraction (**2**) or a Smart APEX CCD diffractometer (**3-5**, **7**, **8**) equipped with a low-temperature attachment. Data were collected using monochromated MoK α radiation ($\lambda = 0.71073$ Å). Scan type ϖ . Absorption corrections based on multiple scans were applied using SADABS⁹ or spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm.¹⁰ The structures were solved by direct methods and refined on F2 using the program SHELXT-2016,¹¹ or Olex2.¹² All non-hydrogen atoms were refined anisotropically. CCDC deposition numbers 2009440 (**2**), 2009441 (**3**), 2009442 (**4**), 2009443 (**5**), 2009444 (**7**), 2009445 (**8**) and 2009446 (**9**) contain the supplementary crystallographic data. These data can be obtained free of charge by The Cambridge Crystallography Data Centre.

1.4. Cell culture

A549 (human lung carcinoma) cells were maintained in high glucose DMEM (Dulbecco's Modified Eagle's Medium) supplemented with 5% fetal bovine serum (FBS), 200 μ g ml⁻¹ penicillin, 100 μ g ml⁻¹ streptomycin and 2 mM L-glutamine.

1.5. Antiproliferative studies: MTT assay

Exponentially growing cells (A549) were seeded at a density of approximately 10^4 cells per well in 96-well flat-bottomed microplates and allowed to attach for 24 h prior to addition of compounds. Various concentrations of the compounds (0.1-100 μ M) were added and incubated for 24 h at 37 °C (total volume 200 μ I). Stock solutions of the compounds were prepared as 10 mM DMSO solutions and diluted using DMEM media. The final concentration of DMSO in each well was ≤ 0.25 %. After 24 h, 10 μ I of MTT (5mg ml⁻¹ in PBS) was added to each well and the plates incubated for an additional 2

h at 37 °C. The media/MTT mixture was eliminated and DMSO (100 μ l per well) was added to dissolve the formazan precipitates. The optical density was measured at 550 nm using a 96-well multiscanner autoreader (ELISA). Absorbance values were normalised to (DMSO-containing) control wells and plotted as concentration of compound versus % cell viability. IC₅₀ values were calculated by nonlinear regression analysis. The reported IC₅₀ values are the average of three independent experiments, each consisting of four replicates per concentration level (overall n = 12).

1.6. Syntheses

Synthesis of 1

Method 1: To a solution of 3-dimethylamine-1-propyne (16.3 μ l, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0540 g, 99%). Method 2: To a solution of 3-dimethylamine-1-propyne (32.6 μ l, 0.2 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0989 g, 0.2 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0129 g, 12%). ¹H NMR (400 MHz, CD₂Cl₂) δ 7.62 – 7.38 (m, 15H, PPh₃), 3.28 (s, 2H, CH₂), 2.25 (s, 6H, Me). ³¹P NMR (162 MHz, CD₂Cl₂) δ 42.30 (s, PPh₃).

Method 1: To a solution of *N*-propargyl-di(2-picolyl)amine (0.0237 g, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O added to precipitate a pale-yellow solid (0.0494 g, 71%). Method 2: To a solution of *N*-propargyl-di(2-picolyl)amine (0.0942 g, 0.4 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.1964 g, 0.4 mmol) and KOH (0.0336 g, 0.6 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0341 g, 12%). HRMS (ESI/QTOF) m/z: [M]⁺ Calcd for C₃₃H₃₀AuN₃P 696.1837; Found 696.1807. ¹H NMR (300 MHz, CD₂Cl₂) δ 8.51 (ddd, ³J_{HH} = 4.9, ⁴J_{HH} = 1.9, ⁵J_{HH} = 1.0 Hz, 2H, Py), 7.70 – 7.41 (m, 18H, PPh₃/Py), 7.14 (ddd, ³J_{HH} = 7.4, ⁴J_{HH} = 4.9, ⁵J_{HH} = 1.4 Hz, 2H, Py), 3.91 (s, 4H, CH₂Py), 3.42 (s, 2H, CH₂C≡C). ³¹P NMR (121 MHz, CD₂Cl₂) δ 42.20 (s, PPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 160.35 (s, Py), 149.56 (s, Py), 136.74 (s, Py), 134.86 (d, ²J_{CP} = 13.9 Hz, *o*-PPh₃), 132.08 (s, *p*-PPh₃), 129.71 (d, ³J_{CP} = 11.2 Hz, *m*-PPh₃), 123.58 (s, Py), 122.36 (s, Py), 97.68 (s, CH₂C≡CAu), 60.00 (s, CH₂Py), 44.15 (s, CH₂C≡CAu).

Molecular structure:

Molecular structures of complex **2** determined by single crystal X ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°]: Au(1)-C(1) 2.024(5), Au(1)-P(1) 2.2711(13), C(1)-C(2) 1.173(7), C(2)-C(3) 1.487(8), C(1)-Au(1)-P(1) 178.95(15), C(1)-C(2)-C(3) 176.6(6).

To a solution of *N*-propargylcarbazole (0.0410 g, 0.2 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0989 g, 0.2 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.1075 g, 81%) HRMS (ESI/QTOF) m/z: [M+Na]⁺ Calcd for C₃₃H₂₅AuNNaP 686.1282; Found 686.1263. ¹H NMR (300 MHz, CDCl₃) δ 8.07 (d, ³*J*_{HH} = 7.6 Hz, 2H, H4/H5 carbazole), 7.61 (dt, ³*J*_{HH} = 8.2 Hz, ⁴*J*_{HH} = 0.9 Hz, 2H, H1/H8, carbazole), 7.52 – 7.36 (m, 17H, PPh₃ + H2/H7 carbazole), 7.21 (ddd, ³*J*_{HH} = 7.9 Hz, ³*J*_{HH} = 7.1 Hz, ⁴*J*_{HH} = 1.0 Hz, 2H, H3/H6 carbazole), 5.21 (d, ⁵*J*_{HP} = 1.4 Hz, 2H, CH₂C≡CAu). ³¹P NMR (162 MHz, CDCl₃) δ 42.11 (s, PPh₃). ¹³C APT (75 MHz, CDCl₃) δ 134.39 (d, ²*J*_{CP} = 13.8 Hz, *o*-PPh₃), 131.65 (d, ⁴*J*_{CP} = 2.4 Hz, *p*-PPh₃), 129.24 (d, ³*J*_{CP} = 11.3 Hz, *m*-PPh₃), 125.77 (s, C2/C7 carbazole), 120.29 (s, C4/C5 carbazole), 119.06 (s, C3/C6 carbazole), 109.38 (s, C1/C8 carbazole), 33.55 (s, CH₂C≡CAu).

Molecular structure:

Molecular structures of complex **3** determined by single crystal X ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°]: Au(1)-C(1) 2.0004(18), Au(1)-P(1) 2.2686(8), C(1)-C(2) 1.200(2), C(2)-C(3) 1.472(2), C(1)-Au(1)-P(1) 175.56(5), C(1)-C(2)-C(3) 173.60(17).

Method 1: To a solution of 1-propargyl-1H-benzoltriazole (0.0157 g, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0455 g, 74%). Method 2: To a solution of 1-propargyl-1H-benzoltriazole (0.0315 g, 0.2 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0989 g, 0.2 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0895 g, 73%). HRMS (ESI/QTOF) m/z: [M+Na]⁺ Calcd for C₂₇H₂₁AuN₃NaP 638.1031; Found 638.1041. ¹H NMR (300 MHz, CD₂Cl₂) δ 8.02 (d, ³J_{HH} = 8.4 Hz, 1H, H4), 7.90 (d, ³J_{HH} = 8.3 Hz, 1H, H7), 7.59 – 7.42 (m, 16H, PPh₃/H5), 7.38 (ddd, ³J_{HH} = 8.1 Hz, ³J_{HH} = 6.9 Hz, ⁴J_{HH} = 1.1 Hz, 1H, H5), 5.54 (s, 2H, CH₂C=CAu). ³¹P NMR (121 MHz, CD₂Cl₂) δ 41.67 (s, PPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 146.23 (s, C7a), 134.20 (d, ²J_{CP} = 13.8 Hz, *o*-PPh₃), 132.60 (s, C4a), 131.58 (d, ⁴J_{CP} = 2.5 Hz, *p*-PPh₃), 129.13 (d, ³J_{CP} = 11.3 Hz, *m*-PPh₃), 127.00 (s, C6), 123.69 (s, C5), 119.54 (s, C4), 110.66 (C7), 93.46 (s, CH₂C=CAu), 39.34 (s, CH₂C=CAu).

Molecular structure:

Molecular structures of complex **4** determined by single crystal X ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°]: Au(1)-C(1) 1.997(3), Au(1)-P(1) 2.2772(8), C(1)-C(2) 1.198(4), C(2)-C(3) 1.468(4), C(1)-Au(1)-P(1) 175.31(8), C(1)-C(2)-C(3) 178.7(3).

To a solution of propargyl bromide (10.8 μ l, 0.1 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0495 g, 0.1 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0388 g, 73%). HRMS (ESI/QTOF) m/z: [M+Na]⁺ Calcd for C₂₂H₂₀AuNaOP 551.0809; Found 551.0831. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.69 – 7.36 (m, 15H, PPh₃), 4.16 (s, 2H, CH₂), 3.35 (s, 3H, Me). ³¹P NMR (121 MHz, CD₂Cl₂) δ 42.07 (s, PPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.86 (d, ²J_{CP} = 13.9 Hz, *o*-PPh₃), 132.13 (d, ⁴J_{CP} = 2.5 Hz, *p*-PPh₃), 130.48 (d, ¹J_{CP} = 55.6 Hz, *i*-PPh₃), 129.72 (d, ³J_{CP} = 11.2 Hz, *m*-PPh₃), 61.17 (s, CH₂), 57.34 (s, Me).

Molecular structure:

Molecular structures of complex **5** adetermined by single crystal X ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°] 5: Au(1)-C(4) 2.005(5), Au(1)-P(1) 2.2870(12), C(2)-C(3) 1.489(7), C(3)-C(4) 1.205(7), C(4)-Au(1)-P(1) 178.38(15), C(4)-C(3)-C(2) 174.4(5).

Method 1: To a solution of 3-(allyloxy)-1-propyne (16.7 µl, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0484 g, 87%). Method 2: To a solution of 3-(allyloxy)-1-propyne (66.9 µl, 0.6 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.2474 g, 0.5 mmol) and KOH (0.0336 g, 0.6 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.2070 g, 62%). HRMS (ESI/QTOF) m/z: [M+Na]⁺ Calcd for C₂₄H₂₂AuNaOP 557.0966; Found 557.0977. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.66 – 7.39 (m, 15H, PPh₃), 5.92 (ddt, ³J_{HH} = 17.3 Hz, ³J_{HH} = 10.4 Hz, ³J_{HH} = 5.5 Hz, 1H), 5.27 (m, 1H, *trans* H), 5.15 (ddt, ³J_{HH} = 10.4 Hz, ²J_{HH} = 2.0 Hz, ⁴J_{HH} = 1.3 Hz, 1H, *cis* H), 4.23 (s, 2H, CH₂C=C), 4.07 (ddd, ³J_{HH} = 5.5 Hz, ⁴J_{HH} = 1.5 Hz, 2H, CH₂CHC=CH₂), 134.85 (d, ²J_{CP} = 13.8 Hz, *o*-PPh₃), 132.12 (d, ⁴J_{CP} = 2.4 Hz, *p*-PPh₃), 130.45 (d, ¹J_{CP} = 55.8 Hz, *i*-PPh₃), 129.71 (d, ³J_{CP} = 11.2 Hz, *m*-PPh₃), 116.86 (s, CH₂CH=CH₂), 99.16 (d, ²J_{CP} = 26.4 Hz, CH₂C=CAu), 70.45 (s, CH₂CH=CH₂), 58.89 (s, CH₂C=C).

Method 1: To a solution of propargylether (7.7 μ l, 0.05 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0242 g, 48%). Method 2: To a solution of dipropargylether (15.4 μ l, 0.1 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0989 g, 0.2 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0534 g, 53%). HRMS (ESI/QTOF) m/z: [M]⁺ Calcd for C₄₂H₃₅Au₂OP₂ 1011.1489; Found 1011.1454. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.66 – 7.43 (m, 30H, PPh₃), 4.34 (s, 4H, CH₂). ³¹P NMR (121 MHz, CD₂Cl₂) δ 42.07 (s, PPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.89 (d, ²J_{CP} = 13.9 Hz, *o*-PPh₃), 132.08 (d, ⁴J_{HH} = 2.4 Hz, *p*-PPh₃), 130.54 (d, ¹J_{CP} = 55.5 Hz, *i*-PPh₃), 129.70 (d, ³J_{CP} = 11.3 Hz, *m*-PPh₃), 98.99 (d, ²J_{CP} = 26.5 Hz, CH₂C≡CAu), 57.33 (s, CH₂C≡C).

Molecular structure:

Molecular structure of complex **7** determined by single crystal X-ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°]: Au(1)-Au(1)#1 3.2907(4), Au(1)-C(1) 2.060(9), Au(1)-C(1B)#2 1.951(9), Au(1)-P(1) 2.2733(12), C(1)-C(2A) 1.205(2), C(3)-C(2A) 1.439(2), C(3)-O 1.409(2), O-C(2) 1.408(2), C(2)-C(1A) 1.439(2), C(1A)-C(1B) 1.205(2), C(1)-Au(1)-P(1) 168.0(7), C(1B)#2-Au(1)-P(1) 169.9(8), C(3)-C(2A)-C(1) 177.6(18), C(1B)-C(1A)-C(2) 174(2).

Method 1: To a solution of phenyl propargylsulfide (20.6 μ l, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Au(acac)(PPh₃)] (0.0559 g, 0.1 mmol) and the solution stirred for 2 h. The solution was filtered through celite, the filtrate concentrated under reduced pressure to approximately 1 ml and Et₂O (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0606 g, 99%). Method 2: To a solution of phenyl propargylsulfide (20.6 μ l, 0.1 mmol) in MeOH (15 ml) was added [AuCl(PPh₃)] (0.0495 g, 0.1 mmol) and KOH (0.0168 g, 0.3 mmol) and the mixture stirred for 12 h. A white precipitate formed which was collected, washed with Et₂O and vacuum dried to give the product (0.0551 g, 91%). HRMS (ESI/QTOF) m/z: [M+Na]⁺ Calcd for C₂₇H₂₂AuNaPS 629.0738; Found 629.0744. ¹H NMR (300 MHz, CD₂Cl₂) δ 7.62 – 7.13 (m, 20H, PPh₃ + Ph), 3.78 (s, 2H, CH₂). ³¹P NMR (121 MHz, CD₂Cl₂) δ 41.97 (s, PPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 136.86 (s, Ph), 134.23 (d, ²J_{CP} = 13.9 Hz, *o*-PPh₃), 131.50 (d, ⁴J_{HH} = 2.4 Hz, *p*-PPh₃), 129.84 (d, ¹J_{CP} = 55.6 Hz, *i*-PPh₃), 129.09 (d, ³J_{CP} = 11.4 Hz, *m*-PPh₃), 128.75 (s, Ph), 128.50 (s, Ph), 125.78 (s, Ph), 23.34 (s, CH₂).

Molecular structure:

Molecular structures of complex **8** determined by single crystal X ray diffraction. Ellipsoids drawn at 50%. Selected bond lengths [Å] and angles [°]: Au(1)-C(1) 1.994(3), Au(1)-P(1) 2.2766(7), C(1)-C(2) 1.206(4), C(2)-C(3) 1.467(4), C(1)-Au(1)-P(1) 173.51(9), C(1)-C(2)-C(3) 175.1(3).

To a solution of **2** (0.0315 g, 0.045 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.0294 g, 0.045 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.0332 g, 88%). ¹H NMR (300 MHz, CD₂Cl₂) δ 8.30 (d, ³J_{HH} = 5.2 Hz, 2H, Py), 7.82 (t, ³J_{HH} = 7.9 Hz, 2H, Py), 7.63 – 7.09 (m, 19H, PPh₃ / Py), 4.60 – 3.73 (m, 4H, CH₂), 3.62 (s, 2H, CH₂C=C). ³¹P NMR (121 MHz, CD₂Cl₂) δ 41.31 (s, br). ¹³C APT (75 MHz, CD₂Cl₂) δ 157.31 (s, *ipso*-Py), 150.04 (s, Py), 139.08 (s, Py), 134.64 (d, ³J_{CP} = 14.0 Hz, *m*-PPh₃), 133.83 (d, ²J_{CP} = 15.5 Hz, *o*-PPh₃), 130.97 (s, *p*-PPh₃), 124.93 (s, Py), 124.52 (s, Py), 59.55 (s, CH₂), 48.35 (s, CH₂C=C).

Molecular structure:

Molecular structure of complex **9** determined by single crystal X-ray diffraction. Ellipsoids are shown at 50% probability. Selected bond lengths [Å] and angles [°]: Au(1)-P(1) 2.2694(6), Au(1)-C(1) 1.999(3), Cu(1)-N(1) 2.033(2), Cu(1)-N(2) 2.264(2), Cu(1)-N(3) 2.017(2), Cu(1)-C(1) 2.019(2), Cu(1)-C(2) 2.004(2), C(1)-Au(1)-P(1) 171.15(7), N(2)-Cu(1)-N(1) 79.63(8), N(3)-Cu(1)-N(1) 109.17(8), N(3)-Cu(1)-N(2) 80.69(8), C(1)-Cu(1)-N(1) 108.27(9), C(1)-Cu(1)-N(2) 111.27(9), C(1)-Cu(1)-N(3) 142.18(9), C(2)-Cu(1)-N(1) 142.73(9), C(2)-Cu(1)-N(2) 116.78(9), C(2)-Cu(1)-N(3) 106.54(9), C(2)-Cu(1)-C(1) 35.70(10), C(3)-C(2)-C(1) 160.1(3).

To a solution of **3** (0.1327 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.1300 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2657 g, 99%). ¹H NMR (300 MHz, CD₂Cl₂) δ 8.09 (d, ³J_{HH} = 7.7 Hz, 2H, H4/H5 carbazole), 7.62 – 7.13 (m, 51H, PPh₃/carbazole), 5.14 (s, 2H, CH₂C=CAu). ³¹P NMR (162 MHz, CD₂Cl₂) δ 41.61 (s, AuPPh₃), 0.73 (s, CuPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 140.53 (s, C1a/C8a carbazole), 134.33 (d, ²J_{CP} = 14.6 Hz, *o*-PPh₃), 131.25 (s, *p*-PPh₃), 129.49 (d, ³J_{CP} = 10.0 Hz, *m*-PPh₃), 126.20 (s, C2/C7 carbazole), 123.52 (s, C4a/C5a carbazole), 120.70 (s, C4/C5 carbazole), 119.59 (s, C3/C6 carbazole), 109.67 (s, C1/C8 carbazole), 33.96 (s, *C*H₂C=CAu).

Synthesis of 11

To a solution of **4** (0.615 g, 0.1 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.0650 g, 0.1 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.1242 g, 97%). ¹H NMR (300 MHz, CD₂Cl₂) δ 8.00 (d, ³J_{HH} = 8.4 Hz, 1H, H4), 7.82 (d, ³J_{HH} = 8.4 Hz, 1H, H7), 7.58 – 7.26 (m, 47H, PPh₃/H5/H6), 5.46 (s, 2H, CH₂C≡CAu). ³¹P NMR (162 MHz, CD₂Cl₂) δ 40.83 (s, AuPPh₃), 0.97 (s, CuPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.40 (d, ²J_{CP} = 14.4 Hz, *o*-PPh₃), 131.34 (s, *p*-PPh₃), 129.54 (d, ³J_{CP} = 10.0 Hz, *m*-PPh₃), 127.95 (s, C6), 124.62 (s, C5), 120.19 (s, C4), 111.14 (s, C7), 40.20 (s, CH₂C≡CAu).

To a solution of **5** (0.1057 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.1300 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2339 g, 98%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58 – 7.22 (m, 45H, PPh₃), 4.14 (s, 2H, CH₂), 3.33 (s, 3H, Me). ³¹P NMR (162 MHz, CD₂Cl₂) δ 41.41 (s, AuPPh₃), 2.01 (s, CuPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.36 (d, J_{CP} = 14.5 Hz, *o*-PPh₃), 131.42 (s, *p*-PPh₃), 129.56 (d, ³J_{CP} = 10.2 Hz, *m*-PPh₃), 61.30 (s, CH₂C≡CAu), 57.39 (s, Me).

Synthesis of 13

To a solution of **6** (0.1109 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.1300 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2354 g, 91%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.52 – 7.30 (m, 45H, PPh₃), 5.90 (ddt, ³J_{HH} = 17.3 Hz, ³J_{HH} = 10.4 Hz, 5.5 Hz, 1H, CH), 5.27 (dd, ³J_{HH} = 17.3 Hz, ⁴J_{HH} 1.8 Hz, 1H, *trans* H), 5.20 – 5.10 (m, 1H, *cis* H), 4.05 (ddd, ³J_{HH} = 5.5 Hz, ⁴J_{HH} = 1.5 Hz, 2H, CH₂CHC=CH₂). ³¹P NMR (162 MHz, CD₂Cl₂, -80 °C) δ 40.08 (s, AuPPh₃), -1.15 (s, CuPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 135.48 (s, CH₂CH=CH₂), 134.36 (d, ²J_{CP} = 14.5 Hz, *o*-PPh₃), 131.39 (s, *p*-PPh₃), 129.55 (d, ³J_{CP} = 10.3 Hz, *m*-PPh₃), 116.94 (s, CH₂CH=CH₂), 100.01 (s, CH₂CH=CH₂), 70.50 (s, CH₂CH=CH₂), 59.02 (s, CH₂C≡CAu).

To a solution of **8** (0.1185 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Cu(NO₃)(PPh₃)₂] (0.1300 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.1843 g, 72%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58 – 7.08 (m, 50H, Ph), 3.74 (s, 2H, CH₂). ³¹P NMR (162 MHz, CD₂Cl₂, -80 °C) δ 38.46 (s, AuPPh₃), -1.16 (s, CuPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.36 (d, ²J_{CP} = 14.6 Hz, *o*-PPh₃), 131.36 (s, *p*-PPh₃), 129.54 (d, ³J_{CP} = 10.2 Hz, *m*-PPh₃), 129.36 (s, *o*-Ph), 129.19 (s, *p*-Ph), 126.48 (s, *m*-Ph), 24.14 (s, CH₂).

Synthesis of 15

To a solution of **3** (0.1227 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Ag(OTf)(PPh₃)₂] (0.1563 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2719 g, 99%). ¹H NMR (300 MHz, CD₂Cl₂) δ 8.06 – 7.94 (m, 2H, H4/H5 carbazole), 7.46 – 7.40 (m, 10H, Ph/carbazole), 7.25 – 7.15 (m, 41H, Ph/carbazole), 4.90 (s, 2H, CH₂C≡CAu). ³¹P NMR (162 MHz, CD₂Cl₂) δ 39.802 (s, AuPPh₃), 11.04 (s, AgPPh₃). ¹³C NMR (75 MHz, CD₂Cl₂) δ 140.17 (s, C1a/C8a carbazole), 134.23 (d, ²J_{CP} = 14.4 Hz, *o*-PPh₃), 131.88 (s, *p*-PPh₃), 129.82 (d, ³J_{CP} = 9.6 Hz, *m*-PPh₃), 126.45 (s, C2/C7 carbazole), 123.62 (s, C4a/C5a carbazole), 120.91 (s, C4/C5 carbazole), 120.09 (s, C3/C6 carbazole), 109.15 (s, C1/C8 carbazole), 102.11 (s, CH₂C≡CAu), 33.80 (s, CH₂C≡CAu).

To a solution of **4** (0.1231 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Ag(OTf)(PPh₃)₂] (0.1563 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2411 g, 91%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.90 (d, ³J_{HH} = 8.4 Hz, 1H, H4), 7.59 (d, ³J_{HH} = 8.4 Hz, 1H, H7), 7.53 – 7.16 (m, 47H, PPh₃/H5/H6), 5.25 (s, 2H, CH₂C≡CAu). ³¹P NMR (162 MHz, CD₂Cl₂) δ 40.60 (s, AuPPh₃), 10.63 (s, AgPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 146.66 (s, C7a), 134.34 (d, ²J_{CP} = 14.9 Hz, *o*-PPh₃), 132.95 (s, C4a), 131.74 (s, *p*-PPh₃), 129.74 (d, ³J_{CP} = 10.2 Hz, *m*-PPh₃), 128.43 (s, C6), 124.91 (s, C5), 120.30 (s, C4), 110.40 (s, C7), 95.53 (s, CH₂C≡CAu), 39.72 (s, CH₂C≡CAu).

Synthesis of 17

To a solution of **5** (0.1057 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Ag(OTf)(PPh₃)₂] (0.1563 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2169 g, 88%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.56 – 7.24 (m, 45H, PPh₃), 3.92 (s, 2H, CH₂), 3.07 (s, 3H, Me). ³¹P NMR (162 MHz, CD₂Cl₂) δ 40.30 (s, AuPPh₃), 9.38 (s, AgPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.32 (d, ²J_{CP} = 14.0 Hz, *o*-PPh₂), 131.92 (s, *p*-PPh₃), 129.87 (d, ³J_{CP} = 9.1 Hz, *m*-PPh₃), 60.91 (s, CH₂), 57.92 (s, Me).

To a solution of **6** (0.1109 g, 0.2 mmol) in CH₂Cl₂ (5 ml) was added [Ag(OTf)(PPh₃)₂] (0.1563 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2502 g, 99%). ¹H NMR (300 MHz, CD₂Cl₂) δ 7.58 – 7.15 (m, 45H, PPh₃), 5.75 – 5.58 (m, 1H, CH), 5.15 – 4.99 (m, 2H, CH=CH₂), 4.02 (s, 2H, CH₂C≡C), 3.83 (d, ³J_{HH} = 5.6 Hz, 2H, CH₂CHC=CH₂). ³¹P NMR (162 MHz, CD₂Cl₂) δ 39.55 (s, AuPPh₃), 10.78 (s, AgPPh₃). ¹³C APT (75 MHz, CD₂Cl₂) δ 134.34 (d, ²J_{CP} = 15.1 Hz, *o*-PPh₃), 131.81 (s, *p*-PPh₃), 129.80 (d, ³J_{CP} = 10.4 Hz, *m*-PPh₃), 117.48 (s, CH₂CH=CH₂), 71.04 (s, CH₂CH=CH₂), 58.59 (s, CH₂C≡C).

Synthesis of 19

To a solution of **8** (0.1185 g, 0.1 mmol) in CH_2Cl_2 (5 ml) was added [Ag(OTf)(PPh_3)_2] (0.1563 g, 0.2 mmol) and the solution stirred for 1 h. The solution was concentrated under reduced pressure to approximately 1 ml and hexane (10 ml) added to precipitate a white solid which was collected and vacuum dried to give the product (0.2106 g, 80%). ¹H NMR (400 MHz, CD_2Cl_2) δ 7.57 – 6.97 (m, 50H, Ph), 3.47 (s, 2H, CH_2). ³¹P NMR (162 MHz, CD_2Cl_2) δ 40.28 (s, AuPPh_3), 9.40 (s, AgPPh_3)

1.7. Crystallographic Data

Complex	2	3	4	5	
Empirical formula	$C_{33}H_{29}AuN_3P$	$C_{33}H_{25}AuNP$	$C_{27}H_{21}AuN_3P$	C ₂₂ H ₂₀ AuOP	
Formula weight	695.53	663.47	615.40	528.32	
Temperature (K)	100(2)	100(2)	100(2)	100(2)	
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	
Space group	P2 ₁ /c	P-1	P2 ₁ /c	P21/c	
Unit cell dimensions					
a (Å)	18.2164(17)	8.7346(17)	8.7346(17) 12.7122(9)		
b (Å)	8.9192(8)	9.4044(19)	10.3660(8)	10.891(4)	
c (Å)	17.6329(17)	16.195(3)	18.2237(13)	13.413(4)	
α (°)	90	88.70(3)	90	90	
β (°)	107.9050(10)	77.31(3)	107.6570(10)	100.08	
γ (°)	90	78.99(3)	90	90	
Volume (ų)	2726.2(4)	1273.7(5)	2288.3(3)	1929.2(11)	
Z	4	2	4	4	
Density (calculated) (Mg/m ³)	1.695	1.730	1.786	1.819	
Absorption coefficient (mm ⁻¹)	5.483	5.861	6.519	7.715	
θ range (°)	2.350 to 27.832	3.135 to 31.162	2.288 to 28.558	2.424 to 28.608	
Reflections collected	23312	46269	20377	16809	
R _{int}	0.0590	0.0280	0.0290	0.1706	
Completeness (%)	99.8	99.7	99.8	99.9	
Data / restraints / parameters	6304 / 0 / 343	7697 / 0 / 325	5407 / 0 / 289	4613 / 0 / 227	
Goodness-of-fit on F ²	1.023	1.038	1.060	1.047	
R ₁ [I>2σ(I)]	0.0386	0.0163	0.0249	0.0398	
wR ₂ (all data)	0.0834	0.0345	0.0671	0.1110	
Largest diff. peak and hole (e.Å ⁻³)	1.549 and -1.973	0.616 and -0.934	1.930 and -1.451	3.406 and -2.475	

Table S1. Selected Crystallographic Data for Complexes 2-5

Complex	7	8	9			
Empirical formula	$C_{42}H_{34}Au_2OP_2$	C ₂₇ H ₂₂ AuPS	$C_{70}H_{66}Au_2Cl_8Cu_2N_8O_8P_2$			
Formula weight	1010.618	606.44	2013.86			
Temperature (K)	100(2)	100(2)	100(2)			
Wavelength (Å)	0.71073	0.71073	0.71073			
Crystal system	Orthorhombic	Monoclinic	Triclinic			
Space group	Pccn	P21/c	P-1			
Unit cell dimensions						
a (Å)	21.9189(13)	8.9759(7)	10.6521(6)			
b (Å)	9.0536(6)	16.5724(12)	11.9337(7)			
c (Å)	17.5745(11)	15.6715(12)	15.9069(9)			
α (°)	90	90	72.6560(10)			
β (°)	90	102.7590(10)	76.3360(10)			
γ (°)	90	90	83.1630(10)			
Volume (ų)	3487.6(4)	2273.6(3)	1872.92(19)			
Z	4	4	1			
Density (calculated) (Mg/m ³)	1.925	1.772	1.785			
Absorption coefficient (mm ⁻¹)	8.528	6.644	4.852			
θ range (°)	1.86 to 28.66	2.458 to 28.671	1.79 to 28.68			
Reflections collected	39861	20660	22593			
R _{int}	0.0435	0.0299	0.0206			
Completeness (%)	100.0	99.8	99.7			
Data / restraints / parameters	4314 / 75 / 232	5430 / 0 / 271	8705 / 655 / 538			
Goodness-of-fit on F ²	1.0559	1.073	1.0513			
R ₁ [I>2σ(I)]	0.0312	0.0232	0.0224			
wR ₂ (all data)	0.0675	0.0591	0.0572			
Largest diff. peak and hole (e.Å ⁻³)	3.3862 and -1.2712	1.442 and -1.037	2.2178 and -0.7914			

Table S2. Selected Crystallographic Data for Complexes 7-9

1.8. Stability of Complex 1 - NMR Studies

Complex **1** (10 mg) was dissolved in CD_2Cl_2 (0.6 ml) under air. NMR spectra were recorded after 10 min and after 24 h, showing the slow formation of a new dimeric/oligomeric product.

³¹P NMR (121 MHz, CD₂Cl₂)

10 min

24 h

A second with the second and a se

all and the second

ومارية أبرأة والمقاطية وأله

ŧĸĹĸĹĸŢĸŊĸŢġĹġĊĊĸŢŶĿĸĊţĹŧĬŊĸĊĸĬĿŶŖĬŶġĸŢĬĊĸĬġĹġſŢĸŊĿĹŧĬĸĬŊĿŢŖĿŊĊĊĹĸĬŊĿĿ

					·					· · ·		1	· · ·	· · ·			
20	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-5
-0	110	100	50	00	10	00	50	10	.00	20	10	0	10	20	50	10	-
								(pr	om)								

1.9. NMR Spectra for Complex 1

1.10. NMR Spectra for Complex 2

¹³C APT (75 MHz, CD₂Cl₂)

-160.36 -149.56 134.95 134.95 133.08 133.08 133.08 133.08 122.36 54.72 54.36 54.72 54.36 53.60 53.60 53.28 -44.15

HSQC

S24

1.11. NMR Spectra for Complex 3

1.12. NMR Spectra for Complex 4

1.13. NMR Spectra for Complex 5

1.14. NMR Spectra for Complex 6

1.15. NMR Spectra for Complex 7

1.16. NMR Spectra for Complex 8

S42

1.17. NMR Spectra for Complex 9

1.18. VT NMR Complex 9

1.19. NMR Spectra Complex 10

1.20. NMR Spectra Complex 11

S52

1.21. NMR Spectra Complex 12

HSQC

1.22. NMR Spectra for Complex 13

HSQC

1.23. NMR Spectra for Complex 14

1.24. NMR Spectra for Complex 15

1.25. NMR Spectra for Complex 16

1.26. NMR Spectra for Complex 17

1.27. NMR Spectra for Complex 18

1.28. NMR Spectra for Complex 19

1.29. NMR Stability Studies

Approx. 10 mg of complex was dissolved in DMSO- d_6 (0.6 ml) and NMR spectra recorded after 1 h, 6 h and 24 h.

Figure S1. Stability of compound 3 after 24 h in DMSO (400 MHz).

Figure S2. Stability of compound 4 after 24 h in DMSO (400 MHz).

Figure S3. Stability of compound 11 after 24 h in DMSO (400 MHz).

gure S4. Stability of compound 13 after 24 h in DMSO (400 MHz).

Figure S5. Stability of compound 14 after 24 h in DMSO (400 MHz).

Figure S6. Stability of compound 15 after 24 h in DMSO (400 MHz).

Figure S7. Stability of compound 16 after 24 h in DMSO (400 MHz).

Figure S8. Stability of compound 17 after 24 h in DMSO (400 MHz).

Figure S9. Stability of compound 18 after 24 h in DMSO (400 MHz).

1.30. UV-Vis Stability Studies

UV-Vis spectra were recorded using a Thermo Fisher Scientific Evolution 600 UV–Visible Spectrophotometer with 1×1 cm quartz cuvettes at 240–600 nm and 298 K. Stock solutions of the compounds were prepared in DMSO to a final concentration of 0.02 M. An intermediary solution of the compound was prepared in DMSO to a final concentration of 2 mM. The final solution of the selected compound was prepared with DMSO and PBS buffer to a final concentration of 20 μ M (20 μ L of the intermediary solution, 380 μ L of DMSO and 1.600 μ L of the PBS buffer solution) A baseline correction was done using the corresponding dimethyl sulfoxide DMSO solution in the buffer (400 μ L in 2 mL, 20 %). Spectra were recorded at times 0 h, 1 h, 3 h and 24 h.

Figure S10. Stability of compound 11 after 24 h in DMSO/PBS

Figure S11. Stability of compound 13 after 24 h in DMSO/PBS

Figure S12. Stability of compound 14 after 24 h in DMSO/PBS

Figure S13. Stability of compound 15 after 24 h in DMSO/PBS

Figure S14. Stability of compound 16 after 24 h in DMSO/PBS

Figure S15. Stability of compound 17 after 24 h in DMSO/PBS

Figure S16. Stability of compound 18 after 24 h in DMSO/PBS

Figure S17. Cell viability (% of control) vs concentration (μ M) for complex 2

Figure S18. Cell viability (% of control) vs concentration (µM) for complex 3

Figure S19. Cell viability (% of control) vs concentration (μ M) for complex 4

Figure S20. Cell viability (% of control) vs concentration (μ M) for complex 5

Figure S21. Cell viability (% of control) vs concentration (μ M) for complex 6

Figure S22. Cell viability (% of control) vs concentration (μ M) for complex 7

Figure S23. Cell viability (% of control) vs concentration (μ M) for complex 8

Figure S24. Cell viability (% of control) vs concentration (μ M) for complex 9

Figure S25. Cell viability (% of control) vs concentration (μ M) for complex 10

Figure S26. Cell viability (% of control) vs concentration (μ M) for complex 11

Figure S27. Cell viability (% of control) vs concentration (μ M) for complex 12

Figure S28. Cell viability (% of control) vs concentration (μ M) for complex 13

Figure S29. Cell viability (% of control) vs concentration (μ M) for complex 14

Figure S30. Cell viability (% of control) vs concentration (μ M) for complex 15

Figure S31. Cell viability (% of control) vs concentration (μ M) for complex 16

Figure S32. Cell viability (% of control) vs concentration (μ M) for complex 17

Figure S33. Cell viability (% of control) vs concentration (μ M) for complex 18

Figure S34. Cell viability (% of control) vs concentration (μ M) for complex 19

Figure S35. Cell viability (% of control) vs concentration (µM) for complex [Cu(NO₃)(PPh₃)₂]

Figure S36. Cell viability (% of control) vs concentration (μ M) for complex [Ag(OTf)(PPh₃)₂]

References

- 1 R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H. Murray and J. P. Fackler, in *Inorg. Synth.*, John Wiley & Sons, Inc., 1989, pp. 85-91.
- 2 C. A. McAuliffe, R. V. Parish and P. D. Randall, J. Chem. Soc., Dalton Trans., 1979, 1730-1735.
- 3 D. Gibson, B. F. G. Johnson and J. Lewis, J. Chem. Soc. A, 1970, 367-369.
- 4 M. Bardají, O. Crespo, A. Laguna and A. K. Fischer, *Inorg. Chim. Acta*, 2000, **304**, 7-16.
- 5 F. A. Cotton and D. M. L. Goodgame, J. Chem. Soc., 1960, 5267-5269.
- 6 S. Huang, R. J. Clark and L. Zhu, *Organic Letters*, 2007, **9**, 4999-5002.
- 7 J. T. Simmons, J. R. Allen, D. R. Morris, R. J. Clark, C. W. Levenson, M. W. Davidson and L. Zhu, *Inorg. Chem.*, 2013, **52**, 5838-5850.
- 8 A. Balci, M. Arslan, A. R. Nixha, C. Bilen, A. Ergun and N. Gençer, *Journal of Enzyme Inhibition* and Medicinal Chemistry, 2015, **30**, 377-382.
- 9 G. M. Sheldrick, *SADABS, Program for adsorption correction*, University of Göttingen, Göttingen, Germany, **1996**.
- 10 CrysAlisPro, Agilent Technologies, Version 1.171.35.11. Multi-scans absorption correction with SCALE3 ABSPACK scaling algorithm.
- 11 G. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.