Supplementary data for

Engineering Z-scheme TiO$_2$-OV-BiOCl via oxygen vacancy for
photocatalytic degradation of imidaclorpid

Bin Yang a, Jiliang Zheng b, Wei Li c, Rongjie Wang a, Danya Li a, Xuhong Guo a, Raul D. Rodriguez d, Xin Jia $^a^*$

a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, People’s Republic of China.

b XINJIANG XIN LIAN XIN ENERGY CHEMICAL CO.,LDT.

c Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universitat Dresden, 01069 Dresden, Germany.

d Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia.

*Corresponding author. jiaxin@shzu.edu.cn (Xin Jia)
The calculation of intensity-average lifetime of samples:

In this work, the time-resolved photoluminescence (TRPL) decay spectra was applied to study the effective transfer of photo-generated electrons intuitively. As shown in Fig. 5(d), all of the TRPL spectra is consistent with a multi-exponential decay process. And their decay dynamics can be obtained through fitting to a biexponential function [1,2]:

\[I(t) = A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right) \]

(1)

where \(I(t) \) indicates the PL intensity, \(A_1 \) and \(A_2 \) are used to represent the amplitude (or weighting factors). the \(\tau_1 \) and \(\tau_2 \) represent the corresponding lifetime. The average lifetime \((\tau_m) \) is often used to evaluate carrier separation efficiency of photogenerated charges, and the \(\tau_m \) was calculated according to the following equation:

\[\tau_m = \frac{(A_1\tau_1^2 + A_2\tau_2^2)}{(A_1\tau_1 + A_2\tau_2)} \]

(2)

The short lifetime component \((\tau_m) \) stems from the nonradiative recombination of the \(\tau_1 \) photogenerated electrons with the surface defects. And, the long lifetime component \((\tau_2) \) is derived from the interband recombination of the free-excitons [3]. The experimental decay profiles of TiO\(_2\)-OV-BiOCl samples are listed in Table. S1. For TiO\(_2\)-OV-BiOCl, the two exponential constants \((\tau_1 \) and \(\tau_2 \)) are 2.207 ns and 2.261 ns, which are longer than that of TiO\(_2\)/BiOCl \((\tau_1 = 3.779 \text{ ns and } \tau_2 = 8.059 \text{ ns}) \) and BiOCl \((\tau_1 = 2.207 \text{ ns and } \tau_2 = 0.245 \text{ ns}) \). Therefore, TiO\(_2\)-OV-BiOCl possess a longer average lifetime \((\tau_m = 5.83 \text{ ns}) \) than that of TiO\(_2\)/BiOCl \((\tau_m = 4.76 \text{ ns}) \) and BiOCl \((\tau_m = 4.33 \text{ ns}) \).
Table S1. The fitted parameters of the TRPL decay profiles.

<table>
<thead>
<tr>
<th>Sample</th>
<th>A_1</th>
<th>τ_1 (ns)</th>
<th>A_2</th>
<th>τ_2 (ns)</th>
<th>τ_{ave} (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$-OV-BiOCl</td>
<td>0.6348</td>
<td>5.978</td>
<td>0.276</td>
<td>2.261</td>
<td>5.83</td>
</tr>
<tr>
<td>TiO$_2$/BiOCl</td>
<td>0.624</td>
<td>3.799</td>
<td>0.803</td>
<td>8.050</td>
<td>4.76</td>
</tr>
<tr>
<td>BiOCl</td>
<td>0.363</td>
<td>2.207</td>
<td>0.276</td>
<td>6.245</td>
<td>4.33</td>
</tr>
</tbody>
</table>

Fig. S1. The prepared TiO$_2$/BiOCl using F127 as the surfactant in other solvents (a) and in the methanol solvent using other surfactants (b).
Fig. S2. SEM images of TiO$_2$-OV-BiOCl (a, b) and TiO$_2$/BiOCl (c, d); HRTEM images of TiO$_2$-OV-BiOCl (e-f).
Fig. S3. The survey spectra of TiO$_2$-OV-BiOCl (a); The BET of prepared TiO$_2$/BiOCl and TiO$_2$-OV-BiOCl (b).

Fig. S4. Photocatalytic degradation of IMD by TiO$_2$-OV-BiOCl under different the additive amount of titanium trichloride solution (a), solvent systems (b) and types of surfactants (c); The change in colour of TiO$_2$-OV-BiOCl and BiOCl (d) before and after illumination under simulated sunlight.
Fig. S5. (a) HPLC graph of IMD and by-products within 35 minutes retention times in IMD undergoing photocatalytic degradation (a) and photo-degradation (b) at varies reaction time; (c) HPLC graph of IMD and by-products (d) undergoing photocatalytic degradation over TiO$_2$-OV-BiOCl and photo-degradation by simulated sunlight at varies reaction time.
Fig. S6. The iron spectra at different retention time of photocatalytic degradation for IMD under irradiation at 40 min.

Reference:
