Electronic Supplementary Information

Facile C–N coupling of coordinated ammonia and labile carbonyl or acetonitrile promoted by a thiolate-bridged dicobalt reaction scaffold

Jianzhe Li,^a Dawei Yang,^{*a} Peng Tong,^a Baomin Wang^a and Jingping Qu^{*ab}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China

^bKey Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237, P. R. China

*E-mail: qujp@dlut.edu.cn

yangdw@dlut.edu.cn

Table of Contents

I. X-ray crystallographic data	S3
II. NMR spectra	S9
III. ESI-HRMS	S14
IV. IR spectra	S22

I. X-ray crystallographic data

	2	$3 \cdot 2 CH_2 Cl_2$
Formula	$C_{25}H_{42}Co_2INOS_2$	$C_{26}H_{47}Cl_4Co_2I_2NS_2$
Formula weight	681.47	951.22
Crystal dimensions (mm ³)	0.28×0.26×0.25	0.30×0.24×0.23
Crystal system	Triclinic	Monoclinic
Space group	P-1	P2(1)/n
a (Å)	8.5554(4)	12.1666(5)
b (Å)	11.8305(5)	15.2586(6)
c (Å)	14.1576(6)	19.7131(7)
α (°)	75.2970(14)	90
eta (°)	86.9868(14)	93.8173(10)
γ (°)	88.2112(13)	90
Volume (Å ³)	1383.88(11)	3651.5(2)
Ζ	2	4
Т(К)	173(2)	173(2)
$D_{ m calcd} ({ m g~cm^{-3}})$	1.635	1.730
$\mu (\mathrm{mm}^{-1})$	2.483	3.024
F (000)	692	1880
No. of rflns. collected	17695	76910
No. of indep. rflns. $/R_{int}$	4828/0.0334	6413/0.0278
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	4629	5928
Data / restraints / parameters	4828/0/297	6413/0/346
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0277/0.0755	0.0305/0.0852
R_1 / wR_2 (all data)	0.0288/0.0764	0.0341/0.0878
GOF (on F^2)	0.924	1.062
Largest diff. peak and hole (e $Å^{-3}$)	0.651/-0.650	0.958/-1.614
CCDC No.	1990564	1990565

Table S1 Crystallographic data for 2 and $3 \cdot 2 CH_2 Cl_2$.

	4·MeCN	5
Formula	$C_{28}H_{49}Co_2F_{12}N_3P_2S_2$	$C_{26}H_{45}Co_2F_6N_2PS_2$
Formula weight	899.62	712.59
Crystal dimensions (mm ³)	0.28×0.25×0.24	0.32×0.28×0.26
Crystal system	Orthorhombic	Monoclinic
Space group	Pbca	P2(1)/n
a (Å)	17.1790(8)	8.565(2)
b (Å)	14.6705(7)	28.994(7)
c (Å)	30.3404(14)	12.607(3)
α (°)	90	90
β (°)	90	92.037(5)
γ (°)	90	90
Volume (Å ³)	7646.5(6)	3128.9(13)
Ζ	8	4
<i>T</i> (K)	173(2)	296(2)
$D_{\text{ calcd}}(\text{g cm}^{-3})$	1.563	1.513
$\mu \ (\mathrm{mm}^{-1})$	1.144	1.300
F (000)	3696	1480
No. of rflns. collected	56387	54174
No. of indep. rflns. $/R_{int}$	9007/0.0543	5508/0.0284
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	7527	4982
Data / restraints / parameters	9007/0/456	5508/0/344
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0548/0.1508	0.0415/0.1110
R_1 / wR_2 (all data)	0.0661/0.1588	0.0467/0.1138
GOF (on F^2)	1.025	1.019
Largest diff. peak and hole (e $Å^{-3}$)	1.336/-0.979	0.675/-0.482
CCDC No.	1990566	1990567

Table S2 Crystallographic data for 4. MeCN and 5.

Fig. S1 ORTEP diagram of **2**. The thermal ellipsoids were shown at 50% probability level. Hydrogen atoms on carbons and one I anion are omitted for clarity.

Table S3 Selected bond distances (Å) and angles (°) for 2.

Distances (Å)			
Co1…Co2	3.0888(1)	Co1–S1	2.2543(7)
Co1–S2	2.2664(7)	Co2–S1	2.2308(7)
Co2–S2	2.2440(7)	Co1–O1	1.9401(19)
Co2–C25	1.926(3)	C25–O1	1.284(3)
C25–N1	1.329(4)	Co1–Cp*1	1.6851(1)
Co2–Cp*2	1.7117(1)		
Angles (°)			
Co1–S1–Co2	87.05(3)	Co1–S2–Co2	86.44(3)
S1–Co1–S2	81.80(3)	S1–Co2–S2	82.82(3)
Co1-O1-C25	115.92(17)	Co2-C25-N1	126.5(2)
Co2C25O1	119.8(2)	N1-C25-O1	113.8(3)
Torsion angles (°)			
S1–Co1Co2–S2	129.736(2)		
Dihedral angles (°)			
Cp*1–Cp*2	23.529		

Fig. S2 ORTEP diagram of 3·2CH₂Cl₂. The thermal ellipsoids were shown at 50% probability level. Hydrogen atoms on carbons, two co-crystallized CH₂Cl₂ molecules and one I anion are omitted for clarity.

Table S4 Selected bond distances (Å) and angles (°) for 3.2CH₂Cl₂.

Distances (Å)			
Co1····Co2	3.4102(1)	Co1–S1	2.2773(10)
Co1–S2	2.2631(10)	Co2–S1	2.2633(10)
Co2–S2	2.2534(10)	Co1–I1	2.5883(5)
Co2–N1	1.976(3)	Co1–Cp*1	1.7231(1)
Co2–Cp*2	1.7060(1)		
Angles (°)			
Co1–S1–Co2	97.36(4)	Co1–S2–Co2	98.06(4)
S2-Co1-S1	81.11(3)	S1-Co2-S2	81.62(3)
Torsion angles (°)			
S1-Co1Co2-S2	164.402(2)		
Dihedral angles (°)			
Cp*1–Cp*2	69.021		

Fig. S3 ORTEP diagram of 4 MeCN. The thermal ellipsoids shown were at 50% probability level. Hydrogen atoms on carbons, one co-crystallized MeCN molecule and two PF₆ anions are omitted for clarity.

Table S5 Selected bond distances (Å) and angles (°) for 4·MeCN.

Distances (Å)			
Co1····Co2	3.3949(1)	Co1–S1	2.2605(9)
Co1–S2	2.2535(9)	Co2–S1	2.2605(9)
Co2–S2	2.2626(9)	Co1–N1	1.923(3)
Co2–N2	1.987(3)	N1-C25	1.142(5)
Co1–Cp*1	1.7061(1)	Co2–Cp*2	1.7039(1)
Angles (°)			
Co1–S1–Co2	97.34(3)	Co1–S2–Co2	97.48(3)
S2–Co1–S1	80.47(3)	S1-Co2-S2	80.28(3)
Co1-N1-C25	173.4(3)		
Torsion angles (°)			
S1-Co1Co2-S2	155.837(3)		
Dihedral angles (°)			
Cp*1–Cp*2	61.921		

Fig. S4 ORTEP diagram of **5**. The thermal ellipsoids were shown at 50% probability level. Hydrogen atoms on carbons and one PF₆ anion are omitted for clarity.

Table S6 Selected bond distances (Å) and angles (°) for 5.

Distances (Å)			
Co1…Co2	3.2296(5)	Co1–S1	2.2446(10)
Co1–S2	2.2454(10)	Co2–S1	2.2576(10)
Co2–S2	2.2458(10)	Co1–N1	1.924(3)
Co2–N2	1.920(3)	N1-C25	1.305(4)
N2-C25	1.320(4)	C25–C26	1.506(5)
Co1–Cp*1	1.6977(3)	Co2–Cp*2	1.7065(3)
Angles (°)			
Co1–S1–Co2	91.67(3)	Co1–S2–Co2	91.96(4)
S2-Co1-S1	82.50(3)	S1-Co2-S2	82.20(3)
Co1-N1-C25	132.6(3)	Co2-N2-C25	131.8(3)
N1-C25-N2	123.3(3)	N1-C25-C26	118.6(3)
N2-C25-C26	118.1(3)		
Torsion angles (°)			
S1–Co1Co2–S2	142.215(11)		
Dihedral angles (°)			
Cp*1–Cp*2	42.786		

II. NMR spectra

Fig. S5 The ¹H NMR spectrum of 2 in CD₂Cl₂.

Fig. S6 The ¹³C NMR spectrum of 2 in CD₂Cl₂.

Fig. S7 The ¹H NMR spectrum of 3 in CD₂Cl₂.

Fig. S8 The ¹³C NMR spectrum of 3 in CD₂Cl₂.

Fig. S10 The ¹H NMR spectrum of D-4 in CD₂Cl₂.

Fig. S11 The ¹³C NMR spectrum of 4 in CD₂Cl₂.

Fig. S12 The ¹H NMR spectrum of 5 in CD₂Cl₂.

Fig. S13 The ¹³C NMR spectrum of 5 in CD₂Cl₂.

Fig. S14 The ¹H NMR spectrum of the product from the reaction of complex 5 with HBF_4 in CD_2Cl_2 .

III. ESI-HRMS

Fig. S15 ESI-HRMS of 2 in CH₂Cl₂.

(a) The signal at m/z = 554.1376 corresponds to $[2-I]^+$. (b) Calculated isotopic distribution for $[2-I]^+$ (upper) and the amplifying diagram for $[2-I]^+$ (bottom).

(a) LJZ 17093001 10 (0.099) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (7:15) TOF MS ES+ 554.1376 3.51e3 100-I Et 2 NH2 % 555.1440 556.1448 0 ----- m/z 700 200 300 400 500 600 800 900 1000 1100 1200 1300 (b) LJZ 17093001 (0.010) Is (0.10,1.00) C25H42Co2NOS2 TOF MS ES+ 554.1372 6.76e12 100-• % 555.1403 556.1365 0 17093001 10 (0.099) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (N 554.1376 3.51e3 100-% 555.1440 556.1448 0 m/z 553 554 555 556 557 558

Fig. S16 ESI-HRMS of 3 in CH₂Cl₂.

(a) The signals at m/z = 654.0547 and 637.0283 correspond to $[\mathbf{3}-I]^+$ and $[\mathbf{3}-I-NH_3]^+$, respectively. (b) Calculated isotopic distribution for $[\mathbf{3}-I]^+$ (upper) and the amplifying diagram for $[\mathbf{3}-I]^+$ (bottom). (c) Calculated isotopic distribution for $[\mathbf{3}-I-NH_3]^+$ (upper) and the amplifying diagram for $[\mathbf{3}-I-NH_3]^+$ (bottom).

(a)

(c)

Fig. S17 ESI-HRMS of D-3 in CH₂Cl₂.

(a) The signal at m/z = 657.0740 corresponds to $[D-3-I]^+$. (b) Calculated isotopic distribution for $[D-3-I]^+$ (upper) and the amplifying diagram for $[D-3-I]^+$ (bottom).

Fig. S18 ESI-HRMS of 4 in CH₂Cl₂.

(a) The signals at m/z = 284.0881, 275.5739 and 255.0619 correspond to $[4-2(PF_6)]^{2+}$, $[4-2(PF_6)-NH_3]^{2+}$ and $[4-2(PF_6)-NH_3-MeCN]^{2+}$. (b) Calculated isotopic distribution for $[4-2(PF_6)]^{2+}$ (upper) and the amplifying diagram for $[4-2(PF_6)]^{2+}$ (bottom). (c) Calculated isotopic distribution for $[4-2(PF_6)-NH_3]^{2+}$ (upper) and the amplifying diagram for $[4-2(PF_6)-NH_3]^{2+}$ (bottom). (d) Calculated isotopic distribution for $[4-2(PF_6)-NH_3-MeCN]^{2+}$ (upper) and the amplifying diagram for $[4-2(PF_6)-NH_3-MeCN]^{2+}$ (bottom).

(c) LJZ 19110608 (0.010) Is (0.10,1.00) C24H38S2Co2CH3CN TOF MS ES+ 275.5750 6.71e12 100-■ % 276.0766 276.5748 277.0753 ┯╱ 0 19110608 42 (0.414) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 275.5739 105 100-% 276.0764 276.5739 _{277.0757} 0 - m/z 274 275 276 277 278 (d) LJZ 19110608 (0.010) Is (0.10,1.00) C24H38S2Co2 TOF MS ES+ 255.0618 6.88e12 100-■ % 255.5634 256.0613 0 -----19110608 42 (0.414) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 255.0619 356 100-% 255.5639 256.0604 256.5578 0 1 ⊓ m/z 253 254 255 257 258 259 256

Fig. S19 ESI-HRMS of 5 in CH₂Cl₂.

(a) The signal at m/z = 567.1686 corresponds to $[5-PF_6]^+$. (b) Calculated isotopic distribution for $[5-PF_6]^+$ (upper) and the amplifying diagram for $[5-PF_6]^+$ (bottom).

Fig. S20 ESI-HRMS of acetamidinium tetrafluoroborate in CH₂Cl₂.

The signal at an m/z = 59.0609 corresponds to $[MeC(NH_2)NH_2]^+$.

IV. IR spectra

Fig. S21 The IR (KBr) spectrum of 2.

Fig. S22 The IR (KBr) spectrum of 3.

Fig. S24 The IR (KBr) spectrum of 4.

Fig. S25 The IR (KBr) spectrum of D-4.

Fig. S26 The IR (KBr) spectrum of 5.

S24