Facile synthesis of ZIF-derived ZnS/ZnIn₂S₄ heterojunction and

enhanced photocatalytic hydrogen evolution

Huihui Song, Na Wang, Hao Meng, Yide Han, Junbiao Wu, Junli Xu, Yan Xu, Xia

Zhang* and Ting Sun*

Faculty of Chemistry, College of Sciences, Northeastern University, Shenyang 110819,

China.

Corresponding authors.

E-mail addresses:

xzhang@mail.neu.edu.cn (X. Zhang),

sun1th@163.com

Fig. S1 XRD patterns of pure ZIF-8

Fig. S2 SEM images patterns of pure ZIF-8

Element	Weight %	Atomic %	Net Int.	Error %	Kratio	Z	R	А	F
SK	27.11	43.13	3241.47	4.60	0.2238	1.1379	0.9398	0.7199	1.0076
ZnK	72.89	56.87	845.90	4.48	0.7168	0.9379	1.0109	0.9987	1.0500

Fig. S3 EDX of ZIF-derived ZnS

Fig. S4 UV–vis diffuse reflectance spectroscopy (a) and re-plotting curves based on Kubelka-Munk function versus the energy of light (b) of single ZIF-8.

Photocatalysts	Hydrogen generation rate (µmol h ⁻¹ g ⁻¹)	Light source (Xe lamp)	Ref.
ZIF-derived ZnS/ZnIn ₂ S ₄	453.4	300 W (AM 1.5 filter)	This work
ZnIn ₂ S ₄ /RGO/BiVO ₄	4.1	350 W ($\lambda \ge 420$ nm cut off filters)	[1]
PtS-ZnIn ₂ S ₄ /WO ₃ -MnO ₂	19.38	300W (420/800 nm cut off filters)	[2]
Ag ₂ S/ZnIn ₂ S ₄ /ZnS	70	300 W	[3]
ZnIn ₂ S ₄ / NiS	76.6	300 W ($\lambda \ge 420$ nm cut off filter)	[4]
ZnIn ₂ S ₄ -Au-TiO ₂	186.3	300 W	[5]
$WS_2/ZnIn_2S_4$	199.1	300 W ($\lambda \ge 420$ nm cut off filter)	[6]
NiS/ZnIn ₂ S ₄	250	300 W ($\lambda \ge 420$ nm cut off filter)	[7]
rGO/TiO ₂ nanotubes/	462.3	300 W ($\lambda \ge 420$ nm cut off filter)	[8]
ZnIn ₂ S ₄			
Ag_2O quantum dot/ZnIn ₂ S ₄	466.8	300 W	[9]

Table S1 Comparison of photocatalytic H_2 production rate reported in the literature with that of ZIF-derived ZnS/ZnIn₂S₄ in our work

References

[1] R. Zhu, F. Tian, G. Cao, F. Ouyang, Int. J. Hydrogen Energ., 2017, 42, 17350-17361.

- [2] Y. Ding, D. Wei, R. He, R. Yuan, T. Xie, Z. Li, Appl. Catal. B, 2019, 258, 117948.
- [3] R. Wang, L. Zhao, L. Li, Q. Song, J. Huang, J. Phys. Chem. Solids, 2020, 136, 109148.
- [4] W. Pudkon, S. Kaowphong, S. Pattisson, P.J. Miedziak, H. Bahruji, T.E. Davies,D.J. Morgan, G.J. Hutchings, *Catal. Sci. Technol.*, 2019, 9, 5698-5711.
- [5] G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, Y. Zhu, Appl. Catal. B, 2018, 234, 260-267.
- [6] J. Zhou, D. Chen, L. Bai, L. Qin, X. Sun, Y. Huang, *Int. J. Hydrogen Energ.*, 2018, 43, 18261-18269.
- [7] A. Yan, X. Shi, F. Huang, M. Fujitsuka, T. Majima, *Appl. Catal. B*, 2019, 250, 163-170.
- [8] H. An, M. Li, W. Wang, Z. Lv, C. Deng, J. Huang, Z. Yin, Ceram. Int., 2019, 45, 14976-14982.
- [9] Y. Xiao, Z. Peng, W. Zhang, Y. Jiang, L. Ni, Appl. Surf. Sci., 2019, 494, 519-531.