Supporting information

Transition Metal Complexes of a Bis(carbene) Ligand Featuring 1,2,4-Triazolin-5-ylidene Donors: Structural Diversity and Catalytic Applications

Vivek Kumar Singh, S. N. R. Donthireddy, Praseetha Mathoor Illam, and Arnab Rit*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

*To whom correspondence should be addressed. E-mail: arnabrit@iitm.ac.in.

Table of contents

1. Characterization data of the ligands and metal complexes	S2
2. Crystallographic data	S12
3. Optimization studies for the catalytic reactions	S14
4. Characterization data of isolated alcohols	·S15
5. NMR spectra of the isolated alcohols	S18
6. References	S29

1. Characterization data of the ligands and metal complexes

Figure S1. ¹H NMR spectrum of **1** in DMSO- d_6 (*). # indicates solvent impurity of H₂O in DMSO- d_6 .

145.1 142.4 136.1 132.2	122.0	112.8	43.7	14.2
75 75	1	1		1

Figure S2. ¹³C{¹H} NMR spectrum of 1 in DMSO- d_6 (*).

Figure S3. ¹H NMR spectrum of 2 in DMSO- d_6 (*). # indicates solvent impurity of H₂O in DMSO- d_6 .

Figure S4. ¹³C{¹H} NMR spectrum of 2 in DMSO- d_6 (*).

Figure S6. ${}^{19}F{}^{1}H$ NMR spectrum of 2 in DMSO- d_6 .

Figure S7. ¹H NMR spectrum of **3** in CD₃CN (*). # and \$ indicate the solvent impurities of H₂O and acetone, respectively.

Figure S8. $^{13}C{^{1}H}$ NMR spectrum of 3 in CD₃CN (*).

Figure S10. ${}^{19}F{}^{1}H$ NMR spectrum of 3 in CD₃CN.

Figure S11. ESI mass spectrum of the dinuclear Ag(I)-NHC complex $[(L)_2Ag_2](PF_6)_2$, 3.

Figure S12. ¹H NMR spectrum of **4** in DMSO- d_6 (*).

Figure S13. $^{13}C{^{1}H}$ NMR spectrum of 4 in CD₃CN (*).

Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum of 4 in CD₃CN.

~-72.09 ~-73.59

Figure S15. ${}^{19}F{}^{1}H$ NMR spectrum of 4 in CD₃CN.

Figure S16. ¹H NMR spectrum of 5 in CDCl₃ (*). # indicates solvent impurity of H_2O in CDCl₃.

Figure S18. ¹H NMR spectrum of 6 in CDCl₃ (*). # indicates solvent impurity of H_2O in CDCl₃.

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum of 6 in CDCl₃ (*).

Figure S20. ESI-Mass spectrum of diorthometalated Ru(II)-NHC complex, 6.

2. Crystallographic Data

Parameter	2	3
Empirical formula	$C_{14}H_{18}F_{12}N_6P_2$	$C_{28}H_{32}Ag_2F_{12}N_{12}P_2$
Formula weight	560.28	1042.33
Crystal system	Triclinic	Monoclinic
Space group	P-1	$P2_1/c$
a (Å)	8.1345(3)	9.5672(4)
b (Å)	10.9351(4)	16.3601(7)
c (Å)	13.7618(5)	14.2120(6)
α (°)	109.328(2)	90.00
β (°)	104.605(2)	108.632(2)
γ (°)	98.266(2)	90.00
V(Å ³)	1082.65(7)	2107.88(16)
Z	2	2
D_{calc} (Mg/m ³)	1.719	1.642
F (000)	564	1032
μ (mm ⁻¹)	0.319	1.094
θ Range (°)	1.656-24.999	2.246-24.997
Crystal size (mm)	0.25 x 0.22 x 0.10	0.25 x 0.22 x 0.16
No. of total reflections	14152	14208
No. of unique reflections $[I > 2\sigma(I)]$	3803	3712
No. of parameters	421 (45)	272 (40)
(Restraints)		
$\begin{array}{l} Goodness-of-fit \ on \\ F^2 \end{array}$	1.079	1.038
Final R indices	0.1825, 0.0694	0.0283, 0.0725
$[I > 2\sigma(I)]$		
R indices (all data)	0.0942, 0.2060	0.0367, 0.0781

Table S1. Crystallographic data for compounds $[L-H_2](PF_6)_2$, 2 and $[(L)_2Ag_2](PF_6)_2$, 3.

Parameter	4	5
Empirical formula	$C_{28}H_{32}Cu_2F_{12}N_{12}P_2$	$C_{34}H_{44}Ir_2N_6Br_2$
Formula weight	953.70	1080.97
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/c$	P-1
a (Å)	8.986(2)	18.0475(6)
b (Å)	16.241(4)	18.9017(7)
c (Å)	14.337(3)	23.8803(9)
α (°)	90.0	77.667(1)
β (°)	106.984(10)	77.973(2)
γ (°)	90.0	89.973(2)
$V(Å^3)$	2001.1(8)	7775.3(5)
Z	2	8
$D_{calc} (Mg/m^3)$	1.583	1.847
F (000)	960	4112
μ (mm ⁻¹)	1.192	8.924
θ Range (°)	1.944-24.991	1.104-25.00
Crystal size (mm)	0.20 x 0.18 x 0.15	0.20 x 0.15 x 0.10
No. of total reflections	11285	125576
No. of unique reflections $[I > 2\sigma(I)]$	3517	27352
No. of parameters	255 (0)	1567 (1778)
(Restraints)		
$\begin{array}{l} Goodness-of-fit \ on \\ F^2 \end{array}$	0.916	1.013
Final R indices	0.0931, 0.2716	0.0586, 0.1186
$[I > 2\sigma(I)]$		
R indices (all data)	0.1386, 0.3103	0.1592, 0.1504

Table S2. Crystallographic data for the compounds $[(L)_2Cu_2](PF_6)_2$, 4 and 5.

3. Optimization studies for the catalytic reactions

Cat. 5 (0.3 mol%) ⁱPrOH, base reflux, 6 h Entry Base Yield (%) 1 KOH 84 92 2 K^tBuO 3 Na^tBuO 100 4 K₂CO₃ Traces 5 None 6^b Na^tBuO 43

Table S3. Base screening for the transfer hydrogenation reaction^a

^{*a*}General conditions: styrene (0.4 mmol), complex **5** (0.3 mol%), NaO'Bu (20 mol%), ^{*i*}PrOH (4 mL), reflux temperature. Yield was determined by GC-MS analysis using mesitylene as internal standard. ^{*b*}Complex **6** was used.

Procedure for the time-dependent product distribution profile of the reaction between 1phenylethanol and benzyl alcohol: In order to study the conversion and product selectivity at different time interval, four identical reactions were carried out parallelly under our standard reaction condition using 1-phenylethanol and benzyl alcohol as substrates at five different reaction durations (2 h, 4 h, 8 h, 12 h). The conversion and product distribution were determined by GC-MS analysis using mesitylene as internal standard.

Figure S21. Course of the reaction progress showing the product distribution for the complex **6**-catalyzed β -alkylation of 1-phenylethanol with benzyl alcohol.

4. Characterization data of the isolated compounds from the catalytic run

1,3-diphenylpropan-1-ol^[1]:

Pale yellow liquid (93 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.31 (m, 4H), 7.30–7.22 (m, 3H), 7.21–7.14 (m, 3H), 4.66 (t, *J* = 5.9 Hz, 1H), 2.79–2.59 (m, 2H), 2.18–1.97 (m, 2H), 1.96 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 141.9, 128.6, 128.6, 128.5, 127.8, 126.1, 126.0, 74.0, 40.6, 32.2 ppm.

3-(4-methoxyphenyl)-1-phenylpropan-1-ol^[1,2]:

Yellow liquid (103 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.22 (m, 5H), 7.08 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 2H), 4.63 (t, J = 5.9 Hz, 1H), 3.75 (s, 3H), 2.72–2.52 (m, 2H), 2.18 (s, 1H), 2.12–1.90 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 144.7, 133.9, 129.4, 128.6, 127.66 (s), 126.0, 73.9, 55.3, 40.8, 31.2 ppm.

3-(4-Chlorophenyl)-1-phenylpropan-1-ol^[1,2]:

Yellow solid (91 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.25 (m, 5H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 2H), 4.61 (t, *J* = 6.4 Hz, 1H), 2.73–2.53 (m, 2H), 2.19 (s, 1H), 2.00 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.3, 131.6, 129.9, 128.7, 128.5, 127.8, 126.0, 73.8, 40.4, 31.4 ppm.

3-(3-Chlorophenyl)-1-phenylpropan-1-ol^[3]:

Yellow liquid (94 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.14 (m, 5H), 7.10–7.01 (m, 3H), 6.93 (d, *J* = 6.6 Hz, 1H), 4.50 (t, *J* = 6.2 Hz, 1H), 2.64–2.41 (m, 2H), 2.19 (s, 1H), 2.04–1.77 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 144.0, 134.2, 129.7, 128.7, 128.6, 127.8, 126.7, 126.1, 126.0, 73.7, 40.2, 31.8 ppm.

1-phenyl-3-(o-tolyl)propan-1-ol^[2]:

Yellow liquid (90 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 4H), 7.28 (s, 1H), 7.16–7.04 (m, 4H), 4.71 (s, 1H), 2.82–2.51 (m, 2H), 2.25 (s, 3H), 2.14–1.91 (m, 2H), 1.95 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.1, 136.1, 130.3, 128.9, 128.7, 127.8, 126.1, 126.1, 126.0, 74.3, 39.3, 29.5, 19.3 ppm.

1-phenyloctan-1-ol^[2,3a]:

Colourless liquid (86 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.14 (m, 5H), 4.63 (s, 1H), 2.02 (s, 1H), 1.83–1.65 (m, 2H), 1.40 (s, 1H), 1.27 (m, 8H), 0.97–0.82 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 128.5, 127.5, 126.0, 74.8, 39.2, 31.9, 29.6, 29.3, 25.9, 22.8, 14.2 ppm.

3-(furan-2-yl)-1-phenylpropan-1-ol^[1]:

Pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (m, 6H), 6.18 (s, 1H), 5.90 (s, 1H), 4.58 (t, *J* = 6.5 Hz, 1H), 2.62 (m, 2H), 2.09 (s, 1H), 1.97 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 144.4, 141.0, 128.6, 127.8, 126.0, 110.2, 105.1, 73.7, 37.2, 24.5 ppm.

3-(Benzo[1,3]dioxol-5-yl)-1-phenylpropan-1-ol^[3b]:

White crystalline solid (117 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.16 (m, 5H), 6.72 (d, *J* = 7.9 Hz, 1H), 6.68 (s, 1H), 6.63 (d, *J* = 7.9 Hz, 1H), 5.90 (s, 1H), 4.66 (t, *J* = 6.1 Hz, 1H), 2.75–2.50 (m, 2H), 2.18–1.93 (m, 2H), 1.89 (d, *J* = 17.4 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 145.8, 144.7, 135.7, 128.7, 127.8, 126.0, 121.3, 109.1, 108.3, 100.9, 73.9, 40.9, 31.9 ppm.

3-phenyl-1-(p-tolyl)propan-1-ol^[1,2]:

Yellow liquid (97 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, *J* = 7.4 Hz, 2H), 7.06 (dt, *J* = 12.8, 7.9 Hz, 7H), 4.47 (t, *J* = 6.3 Hz, 1H), 2.55 (m, 2H), 2.22 (s, 3H), 2.13 (s, 1H), 2.05–

1.80 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.7, 137.3, 129.2, 128.5, 128.4, 126.0, 125.9, 73.7, 40.4, 32.1, 21.2 ppm.

1-(4-bromophenyl)-3-phenylpropan-1-ol^[1,3]:

Colourless liquid (120 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.4 Hz, 2H), 7.26 (q, *J* = 7.3 Hz, 2H), 7.18 (t, *J* = 8.9 Hz, 5H), 4.61 (s, 1H), 2.78–2.58 (m, 2H), 2.09 (s, 1H), 1.98 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 141.6, 131.7, 128.6, 128.5, 127.9, 126.1, 121.4, 73.2, 40.5, 32.0 ppm.

1-(Naphthalen-2-yl)-3-phenylpropan-1-ol^[1,3]:

White solid (121 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 3H), 7.79 (s, 1H), 7.48 (t, *J* = 9.4 Hz, 3H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 4.3 Hz, 1H), 7.22–7.16 (m, 3H), 4.86 (s, 1H), 2.84–2.64 (m, 2H), 2.29–2.04 (m, 2H), 1.96 (s, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.9, 133.4, 133.2, 128.6, 128.6, 128.1, 127.9, 74.2, 40.5, 32.2 ppm.

5. NMR spectra of the isolated alcohols from the catalytic run in CDCl₃

. 170 . 150 . 120 . 50 . 30 ppm

7.23 7.23 7.23 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.02 6.92 6.92 ₹ 4.52 ₹ 4.50 4.49 2,25,55 2,25,56 2,25,57,57 2,25,57 2,5

<144.4
144.0
144.0
129.7
128.6
128.6
128.6
126.1
126.0
126.0</pre>

77.5 77.2 76.8 73.7 — 40.2 — 31.8

7,17 7,17 7,17 7,17 7,17 7,17 7,17 7,17 7,10 7,17 7,10

7.45 7.7.45 7.7.45 7.7.27 7.7.27 7.7.23 7.7.24 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.25 7.7.26 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7.7.27 7

143.7
 141.6
 131.7
 131.7
 128.6
 128.5
 128.5
 126.1
 126.1
 121.4

77.5
 77.2
 76.8
 73.2
 73.2

--- 40.5 --- 32.0

6. References

1. Genç, S.; Arslan, B.; Gülcemal, S.; Günnaz, S.; Çetinkaya, B.; Gülcemal, D. Iridium(I)catalyzed C–C and C–N bond formation reactions via the borrowing hydrogen strategy. *J. Org. Chem.* **2019**, *84*, 6286–6297.

2. Freitag, F.; Irrgang, T.; Kempe, R. Cobalt-catalyzed alkylation of secondary alcohols with primary alcohols via borrowing hydrogen/hydrogen autotransfer. *Chem. Eur. J.* **2017**, *23*, 12110–12113.

3. (a) Roy, B. C.; Debnath, S.; Chakrabarti, K.; Paul, B.; Maji, M.; Kundu, S. Orthoamino group functionalized 2,2'-bipyridine based Ru(II) complex catalysed alkylation of secondary alcohols, nitriles and amines using alcohols. *Org. Chem. Front.* **2018**, *5*, 1008–1018. (b) Shee, S.; Paul, B.; Panja, D.; Roy, B. C.; Chakrabarti, K.; Ganguli, K.; Das, A.; Das, G. K.; Kundu, S. Tandem cross coupling reaction of alcohols for sustainable synthesis of β -alkylated secondary alcohols and flavan derivatives. *Adv. Synth. Catal.* **2017**, *359*, 3888–3893.