Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Nitrogenous carbon dot decorated natural microcline: An ameliorative

dual fluorometric probe for Fe³⁺ and Cr⁶⁺ detection

Souravi Bardhan¹, Shubham Roy¹, Dipak Kr. Chanda², Saheli Ghosh¹, Dhananjoy Mondal¹,

Solanky Das³, Sukhen Das^{1*}

¹Department of Physics, Jadavpur University, Kolkata-700032, India

²School of Materials Science and Nano-Technology, Jadavpur University, Kolkata-700032,

India

³Department of Geology, Jadavpur University, Kolkata-700032, India

Supplementary data

*Corresponding Author:

Prof. Sukhen Das sdasphysics@gmail.com (+91 9433091337)

Figure S1: EDX images of (a) M and (b) MCD, showing their purity.

Figure S2: (a) UV-vis spectra of M and MCD; (b) TDDFT analysis of MCD showing transition during light absorption; (c) PL spectra depicting the comparison of fluorescence properties of M and MCD at 370nm excitation

Figure S3: (a) Fluorescence spectra of MCD at different excitation wavelengths ranging from 330 nm-400 nm; (b) Photo-stability of MCD recorded for 90 min; (c) Fluorescence stability of MCD at various pH

Figure S4: Surface charge of the sensor material (MCD) obtained from Zeta potential analysis

Figure S5: Electron density mapping from DFT analysis of C-dot showing active binding sites for ions

Sensor Material	Source	Contami- nant	Detection Limit (µM)	Linear Range	Single/ Multiple sensing	Ref
[Zn ₂ (ttz)H ₂ O] n	Synthesized	Cr ⁶⁺	20	18-1.8×10 ³	Single	1
[Eu(Hpzbc) ₂	Synthesized	Cr^{6+}	22	~10-	Multiple	2
$(NO_3)].H_2O$		&		1.0×10^{3}		
		Fe ³⁺	26	0 -		
				220×10 ⁻⁶ M		
Zn-MOF	Synthesized	Cr^{6+}	3.9	10-300	Multiple	3
		& Cr ³⁺	4.9			
Rhodamine-	Synthesized	Fe ³⁺	100	0.225 -	Multiple	4
based derivative		& Cu ²⁺		0.525 mM		
Carbon dot	Natural	Cr^{6+}	0.1	0-70 μM	Single	5
Poly(3,4- propylenedioxyt hiophene) derivative	Synthesized	Fe ³⁺	23	0-0.10 nM	Single	6
Carbon dot	Natural	Fe ³⁺	0.48 0.29	1-10 μM 1-8 μM	Single	7
MCD	Natural	Cr ⁶⁺ & Fe ³⁺	~4 ~19	0-34 μM		This work

 Table S1: Comparative study with other recent literatures

References:

- Cao, C.-S.; Hu, H.-C.; Xu, H.; Qiao, W.-Z.; Zhao, B. Two Solvent-Stable MOFs as a Recyclable Luminescent Probe for Detecting Dichromate or Chromate Anions. *CrystEngComm* 2016, 18, 4445-4451.
- (2) Li, G.-P.; Liu, G.; Li, Y.-Z.; Hou, L.; Wang, Y.-Y.; Zhu, Z. Uncommon Pyrazoyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties. *Inorg. Chem.* 2016, 55, 3952-3959.
- (3) Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An Amino-Decorated Dual-Functional Metal-Organic Framework for Highly Selective Sensing of Cr(III) and Cr(VI) Ions and Detection of Nitroaromatic Explosives. *J. Mater. Chem. A* 2016, *4*, 15494-15500.
- (4) Weerasinghe, A. J.; Abebe, F. A.; Sinn, E. Rhodamine based turn-ON dual sensor for Fe³⁺ and Cu²⁺. *Tetrahedron Lett.* **2011**, *52*, 5648-5651.
- (5) Tai, D.; Liu, C.; Liu, J. Facile synthesis of fluorescent carbon dots from shrimp shells and using the carbon dots to detect chromium (VI). *Spectros Lett.* **2019**, *52(3-4)*, 194-199.
- (6) Chen, X.; Zhao, Q.; Zou, W.; Qu, Q.; Wang, F. A colorimetric Fe³⁺ sensor based on an anionic poly (3, 4-propylenedioxythiophene) derivative. *Sensor Actuat B-Chem.* 2017, 244, 891-6.
- (7) Wang, N.; Wang, Y.; Guo, T.; Yang, T.; Chen, M.; Wang, J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. *Biosensors and Bioelectronics*, **2016**, *85*, 68-75.