Electronic Supplementary Information

A mechanistic insight into the rapid and selective removal of Congo Red by an amide functionalised Zn(II) coordination polymer

Anup Paul,*,[†] Kabita Das,[‡] Anirban Karmakar,[†] M. Fátima C. Guedes da Silva, Armando J. L. Pombeiro*,[†]

[†]Centro de Química Estrutura, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa. Portugal.

[‡]Department of Environmental Studies, North-Eastern Hill University, Meghalaya, Shillong 793022, India

*Corresponding authors, E-mail: <u>kanupual@gmail.com</u>, <u>pombeiro@tecnico.ulisboa.pt</u>.

Contents:

Fig. S1. ¹H-NMR spectrum of HL recorded in DMSO-*d*₆.

Fig. S2. ¹³C-NMR spectrum of HL recorded in DMSO- d_6 .

Fig. S3. IR Spectra of HL and CPs 1-3.

Fig. S4. Simulated and Experimental PXRD of 1.

Fig. S5. Simulated and Experimental PXRD of 2.

Fig. S6. Simulated and Experimental PXRD of 3.

Fig. S7. (**A**) Naked eye visualization on the removal of dyes by **2** at room temperature. (**B**) UV-vis spectra of dye solutions upon adsorption on **2** at room temperature: (a) Congo red, (b) rhodamine 6g, (c) rhodamine B, and (d) fluorescein natrium.

Fig. S8. (**A**) Naked eye visualization on the removal of dyes by **3** at room temperature. (**B**) UV-vis spectra of dye solutions upon adsorption on **3** at room temperature: (a) Congo red, (b) rhodamine 6g, (c) rhodamine B, and (d) fluorescein natrium.

Fig. S9. SEM image of 1 recorded before and after the adsorption of CR.

Fig. S10. EDX of 1 recorded before (left) and after (right) the adsorption of CR.

Fig. S11. Point of zero charge measurement of 1. Plot of final versus initial pH (red line).

Fig. S12. IR spectra of 1 after various cycles.

 Table S1. Selected bond distances (Å) and angles (°) for compounds 1-3.

Table S2. Hydrogen bond geometry (Å, °) in compounds 1, 2 and 3.

Fig. S1. ¹H-NMR spectrum of HL recorded in DMSO-*d*₆.

Fig. S2. ¹³C-NMR spectrum of HL recorded in DMSO- d_6 .

Fig. S3. IR Spectra of HL and CPs 1-3.

Figure S4: Simulated and Experimental PXRD of 1.

Fig. S5: Simulated and Experimental PXRD of 2.

Fig. S6. Simulated and Experimental PXRD of 3.

(A)

Fig. S7. (**A**) Naked eye visualization on the removal of dyes by **2** at room temperature. (**B**) UV-vis spectra of dye solutions upon adsorption on **2** at room temperature: (a) Congo red, (b) rhodamine 6g, (c) rhodamine B, and (d) fluorescein natrium.

(A)

Fig. S8. (**A**) Naked eye visualization on the removal of dyes by **3** at room temperature. (**B**) UV-vis spectra of dye solutions upon adsorption on **3** at room temperature: (a) Congo red, (b) rhodamine 6g, (c) rhodamine B, and (d) fluorescein natrium.

Fig. S9. SEM image of 1 recorded before and after the adsorption of CR.

Fig. S10. EDX of 1 recorded before (left) and after (right) the adsorption of CR.

Fig. S11. Point of zero charge measurement of 1. Plot of final versus initial pH (red line).

Fig. S12. IR spectra of 1 after various cycles.

Table S1. Selected bond distances (Å) and angles (°) for compounds 1-3						
1	Zn1-O2 2.006(3), Zn1-O3 2.034(2), Zn1-O4 2.431(3), Zn1-O5 2.029(3), Z					
	N2 2.064(3).					
	<o2-zn1-o5 101.31(13);="" 103.12(11);="" 99.79(11);<="" <o2-zn1-o3="" <o5-zn1-o3="" th=""></o2-zn1-o5>					
	<o2-zn1-n2 107.81(11);<="" 143.16(12);="" 92.75(11);="" <o3-zn1-n2="" <o5-zn1-n2="" p=""></o2-zn1-n2>					
	<o2-zn1-o4 156.53(10);="" 58.25(9);<="" 92.55(11);="" <o3-zn1-o4="" <o5-zn1-o4="" p=""></o2-zn1-o4>					
	<n2-zn1-o4 87.15(9).<="" th=""></n2-zn1-o4>					
2	Cd1-O1 2.2900(12); Cd1-N2 2.3139(13); Cd1-O4 2.3425(13).					
	<01-Cd1-O1' 180 0' <04-Cd1-O4' 180 00(7)' <n2-cd1-n'2 00(8)'<="" 180="" th=""></n2-cd1-n'2>					
	<pre><01-Cd1-N2 89 55(5): <01'-Cd1-N2 90 45(5): <01-Cd1-O4 93 16(5):</pre>					
	<pre><01'-Cd1-O4 86.84(5); <n2-cd1-o4 89.76(5);="" 90.24(5).<="" <n2'-cd1-o4="" pre=""></n2-cd1-o4></pre>					
3	Pb1-O1 2.3821(19); Pb1-O4 2.3817(17); Pb1-N4 2.534(2).					
	<04-Pb1-O1 106.94(7); <04-Pb1-N4 76.58(6); <o1-pb1-n4 80.35(6).<="" th=""></o1-pb1-n4>					

Table S2. Hydrogen bond geometry (Å, °) in compounds 1-3							
Compound	D-H···A	D…H (Å)	H····A (Å)	D…A (Å)	<d-h…a(°)< td=""></d-h…a(°)<>		
1	N1-H1N…O4	0.88	2.10	2.978(4)	172		
	O5-H5A…O1	0.81	1.91	2.709(4)	173		
	O5-H5B…O7	0.89	1.76	2.646(5)	172		
	С10-Н10…О4	0.93	2.64	3.341(4)	133		
	C12-H12…O1	0.93	2.36	3.068(4)	132		
	С13-Н13…Об	0.93	2.26	2.850(4)	121		
	С22-Н22В…О5	0.96	2.72	3.382(9)	126		
2	O4-H4A…O2	0.93	1.79	2.6919(19)	164		
	O4-H4B…O3	0.81	1.95	2.7546(19)	171		
	N1-H1N…O2	0.82	2.34	3.086(2)	152		
3	N1-H1N…O3	0.86	2.12	2.951(3)	162		
	N2-H2N…O6	0.88	2.09	2.943(3)	163		
	С10-Н10…ОЗ	0.93	2.42	2.876(3)	110		
	С28-Н28…О4	0.93	2.36	2.999(3)	125		