Electronic supplementary information

Theoretical exploration of the photophysical properties of twocomponent Rull-Porphirin dyes as promising assemblies for a combined antitumor effect

Marta Erminia Alberto*, Gloria Mazzone*, Claudia Regina, Nino Russo, Emilia Siciliaª

Table of Contents

S1: UV-Vis spectrum and main absorption wavelengths calculated for compound **Ru-m3a** by using the 6-31G*/SDD basis set and different XC functionals in dichloromethane (E=8.93) compared with S2: Optimized structures of the compounds m-3, Ru-m3a, Ru-m3b, m-4, Ru-m4a, Ru-m4b under investigation, obtained in water at B3LYP/6-31+G(d,p)/SDD//6-311++G(2df,2p) level of theory;S2 S3: UV-Vis Spectra of a) m-3, Ru-m3a, Ru-m3b and b) m-4, Ru-m4a, Ru-m4b, calculated in water at S4: Energy diagram, plots of the Gouterman orbitals and H-L gaps (eV) for m-3, Ru-m3a, Ru-m3b, m-4, **Ru-m4a**, **Ru-m4b** compounds, calculated in water at M06/6-31+G(d,p)/SDD level of theory......S4 S5: Lowest vertical singlet and triplet excitation energies (eV) for *m*-3, Ru-*m*3a, Ru-*m*3b, *m*-4, Ru-*m*4a, S6: a) Scheme of the studied Hydrolysis Processes and b) Computed activation free energies (kcal mol⁻¹), for first I and second II hydrolysis processes of Ru-m3a, Ru-m3b, Ru-m4a, Ru-m4b computed in water at B3LYP/6-31+G(d,p)/SDD//6-311++G(2df,2p) level of theory; c,d) Optimized structures intercepted along the hydrolysis free energy profiles **Ru-m3a** and **Ru-m4a** compounds......**S6** a) UV-Vis spectrum and b) main absorption wavelengths calculated for compound **Ru-m3a** by using the 6-31G*/SDD basis set and different XC functionals in dichloroMethane (ϵ =8.93) compared with experimental data available in literature.¹

a)

b)

	В	band	Q1	band	Q2	2 band
XC Functional	λ nm (f)	Main Configuration	λ nm (f)	Main Configuration	λ nm (f)	Main Configuration
B3LYP	417 (1.1052)	H-1→L+1	549 (0.0623)	H-1→L	584 (0.0561)	H→L
Cam-B3LYP	394 (1.9246)	H-1→L+1	551 (0.0347)	H-1→L	601 (0.0286)	H→L
M06	419 (1.5111)	$H-1 \rightarrow L+1$	564 (0.0463)	H-1→L	596 (0.0427)	H→L
M06L	427 (1.2082)	H-2→L	569 (0.0666)	H-1→L	606 (0.0321)	H-1→L
PBE0	409 (1.4337)	H-1→L+1	539 (0.061)	H-1→L	574 (0.00527)	H→L
M062X	396 (1.4579)	H-1→L+1	530 (0.0433)	H-1→L	580 (0.0308)	H→L
wB97XD	395 (1.8494)	H-1→L+1	562 (0.0366)	H-1→L	617 (0.00287)	H→L
Exp [1]	419	101 100	515, 550		589, 645	

1] J Biol Inorg Chem, 2009, 14:101–109

Optimized structures of the compounds *m*-3, **Ru**-*m*3a, **Ru**-*m*3b, *m*-4, **Ru**-*m*4a, **Ru**-*m*4b under investigation, obtained in water at B3LYP/6-31+G(d,p)/SDD//6-311++G(2df,2p) level of theory;

S2

UV-Vis Spectra of a) *m*-3, Ru-*m*3a, Ru-*m*3b and b) *m*-4, Ru-*m*4a, Ru-*m*4b, calculated in water at M06/6-31+G(d,p)/SDD level of theory; Available experimental data in literature are reported below.

Experimental	Data	in CH ₂	Cl_2	[1,2]
LADUITINGINA	Data		V /1/	

Compound	Soret Band	Q band IV	Q band III	Q band II	Q band I
Ru- <i>m</i> 3a ¹	419	515	550	589	645
Ru- <i>m</i> 3b ¹	418	515	549	589	646
$m-4^2$	415	513	547	587	644
Ru- <i>m</i> 4a ¹	418	515	551	590	646
Ru- <i>m</i> 4b ¹	419	515	551	589	645

[1] J Biol Inorg Chem, 2009, 14, 101–109; [2] New J. Chem., 2000, 24, 555-560

Energy diagram and plots of the Gouterman orbitals for *m*-3, Ru-*m*3a, Ru-*m*3b, *m*-4, Ru-*m*4a, Ru-*m*4b compounds, calculated in water at M06/6-31+G(d,p)/SDD level of theory. H-L energy gaps are given in eV.

Lowest vertical singlet and triplet excitation energies (eV) for *m*-3, Ru-*m*3a, Ru-*m*3b, *m*-4, Ru-*m*4a, Ru-*m*4b computed in water at TD-M06/6-31+G(d,p)/SDD level of theory

a) Scheme of the studied Hydrolysis Processes and b) Computed activation free energies (kcal mol⁻¹), for first I and second II hydrolysis processes of Ru-m3a, Ru-m3b, Ru-m4a, Ru-m4b computed in water at B3LYP/6-31+G(d,p)/SDD//6-311++G(2df,2p) level of theory. To illustrate the reaction mechanism, the optimized structures intercepted along the hydrolysis free energy profiles are reported for c) Ru-m3a and d) Ru-m4a compounds.

S6

Activation Free Energy (kcal/mol)			
	I Hydrolysis	II Hydrolysis	
Ru- <i>m</i> 3a	24,8	21,0	
Ru- <i>m</i> 3b	20,4	19,6	
Ru- <i>m4</i> a	18,5	24,0	
Ru- <i>m4b</i>	18,1	24,0	

