# Electronic Supplementary Information (ESI)

# Bis(pentafluorophenyl)-*o*-carborane and Its Arylthio Derivatives: Synthesis, Electrochemistry and Optical Properties

Naoki Shida, Satoshi Owaki, Hiroshi Eguchi, Takanobu Nishikawa, Ikuyoshi Tomita, Shinsuke Inagi\*

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan, Tel: +81-45-924-5407, Fax: +81-45-924-5407 E-mail: inagi@cap.mac.titech.ac.jp

#### Contents

| General considerations                                | <i>S2</i>   |
|-------------------------------------------------------|-------------|
| Synthesis                                             | <i>S3</i>   |
| CV of hexafluorobenzene                               | <i>S</i> 7  |
| Electrochemical stability of 1                        | <i>S7</i>   |
| CVs of 1, 2a, 3a-c                                    | <i>S</i> 8  |
| UV-absorption and fluorescent spectra of 2a, 3a-c     | <i>S9</i>   |
| Single crystal X-ray diffraction analysis of <b>1</b> | S10         |
| DFT calculation                                       | <i>S11</i>  |
| NMR Charts                                            | S19         |
| Supporting reference                                  | <i>S</i> 27 |
|                                                       |             |

#### 1. General considerations

Reagents and dehydrated solvents were obtained from commercial source and used without further purification. <sup>1</sup>H, <sup>19</sup>F and <sup>11</sup>B NMR spectra were recorded on JEOL JNM EX-270 (<sup>1</sup>H: 270.05 MHz, <sup>19</sup>F: 254.05 MHz) spectrometer, JEOL ECP-300 (<sup>11</sup>B: 96.00 MHz) and Bruker biospin AVANCE III HD500 (<sup>19</sup>F: 470.59 MHz) spectrometer using CDCl<sub>3</sub> as a solvent. The chemical shifts for <sup>1</sup>H and <sup>19</sup>F NMR spectra are given in  $\delta$  (ppm) relative to internal TMS, deuterated solvent, and monofluorobenzene respectively. The chemical shifts for <sup>11</sup>B NMR spectra are given in  $\delta$  (ppm) relative to boron trifluoride diethyl etherate (0.0 ppm) as an external standard. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-SX102A spectrometer. The cyclic voltammetry (CV) measurements were performed using BAS ALS Instruments model 600 A. All CV measurements were carried out in the three-electrode system equipped with glassy carbon (GC) disk working ( $\varphi = 3 \text{ mm}$ ), a Pt plate counter electrode (10 mm × 10 mm) and a saturated calomel electrode (SCE) as a reference electrode in DMF solution of 0.1 M Bu<sub>4</sub>NClO<sub>4</sub> at scan rate of 10 mVs<sup>-1</sup>. Spectroelectrochemistry measurements were carried out using SEC2000-UV/Vis spectrometer system (BAS). UV-vis absorption spectra were recorded with SHIMAZU UV-1800. In-solution photoluminescence (PL) spectra were obtained on a JASCO FP-6500 spectrophotometer. The fluorescence quantum yield ( $\Phi_{\rm F}$ ) of the compounds in a dilute solution  $(10^{-5} \text{ M})$  was determined on excitation at their  $\lambda_{max}^{abs}$  in comparison with the emission of quinine sulfate dihydrate/0.1 M sulfuric acid solution ( $\Phi_{\rm F} = 0.55$ ) as a standard. Solid-state photoluminescence spectra were recorded on a Shimadzu RF-6000 spectrometer equipped with an integrating sphere. The single crystal X-ray analysis was carried out on a Rigaku RAXIS RAPID-F Imaging Plate diffractometer (Mo-K  $\alpha$  radiation,  $\lambda = 0.71075$  Å). An empirical absorption correction was carried out by the ABSCOR method.1 The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. Molecular orbital DFT calculations were performed at the B3LYP/6-31G(d) level by using the GAUSSIAN16 suite of programs.

#### 2. Synthesis

Synthesis of trimethyl((pentafluorophenyl)ethynyl)silane

$$F \rightarrow F = F$$

Trimethyl((pentafluorophenyl)ethynyl)silane was prepared according to the reported procedure.<sup>2</sup> Under argon atmosphere, stirred solution of to a tetrakis(triphenylphosphine)palladium(0) (2.61 g, 2.25 mmol), CuI (428 mg, 2.25 mmol) in toluene (120 mL) was added bromopentafluorobenzene (11.1 g, 45 mmol), diisopropylamine (18 mL), trimethylsilylacetylene (6.93 mL, 49.5 mmol). The solution was reacted at 80 °C for 19 h. After cooling to room temperature, solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc, then washed with saturated NH<sub>4</sub>Cl aq. and brine. The organic layer was dried over anhydrous MgSO<sub>4</sub>. After filtration and removal of the solvent, the residue was purified by silica gel column chromatography (hexane) to give trimethyl((pentafluorophenyl)ethynyl)silane as an yellow oil in 96% yield (11.4 g, 43.1 mmol).

**Trimethyl**((**pentafluorophenyl**)**ethynyl**)**silane**: yellow oil. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 0.28 (s, 9H, TMS). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) –161.9 (m, 2F), –152.4 (t, *J* = 20.3 Hz, 1F), –135.8 (m, 2F).



Perfluorotolane was prepared according to the reported procedure.<sup>2</sup> Under argon atmosphere, to a stirred solution of tetrakis(triphenylphosphine)palladium(0) (2.26 g, 1.96 mmol), CuCl (4.53 g, 45.7 mmol) in DMF (100 mL) was added trimethyl((pentafluorophenyl)ethynyl)silane (12.0 g, 45.3 mmol), pentafluoroiodobenzene (9.24 g, 31.4 mmol) diisopropylamine (7.55 mL). The solution was stirred at 80 °C for 38 h. After cooling to room temperature, solvent was evaporated under reduced pressure. The residue was dissolved in AcOEt, then washed with saturated NH<sub>4</sub>Cl aq. and brine. The organic layer was dried over anhydrous MgSO<sub>4</sub>. After filtration and removal of the solvent, the residue was purified by silica gel column chromatography

(hexane). The material was further purified by the recrystallization from hexane to give perfluorotolane as a white solid in 61% yield (6.83 g, 19.1 mmol).

**Perfluorotolane**: white solid. <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) –160.65 (m, 4F, Ar), –149.37 (t, *J* = 20.3 Hz, 2F, Ar), –134.33 (m, 4F, Ar).

1,2-Bis(pentafluorophenyl)-1,2-closo- $C_2B_{10}H_{10}(1)$ 



**1** was prepared under similar conditions to the previous reports.<sup>3,4</sup> Under argon atmosphere, decaborane (388 mg, 3.12 mmol), **1** (998 mg, 2.79 mmol), silver nitrate (23.8 mg, 0.14 mmol) were dissolved in MeCN (0.5 mL) and toluene (27 mL) mixture The solution was refluxed for 48 h. After cooling to room temperature, the mixture was passed through celite, then. solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane) to give **2** as a white solid in 26% yield (351 mg, 0.738 mmol).



1: white solid. <sup>1</sup>H NMR (270.05 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 3.7-1.5 (br, 10H, B-H). <sup>19</sup>F NMR (254.05 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) –129.4 (br, 4F), –145.2 (m, 2F), –158.0 (m, 4F). <sup>11</sup>B NMR (96.00 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) –0.12 (2B), –1.57 (2B), –8.13 (4B), –9.61 (2B). HRMS (APCI) calcd. for C<sub>14</sub>H<sub>10</sub>B<sub>10</sub>F<sub>10</sub> [M]<sup>+</sup>:478.1572, found 478.1562.

General procedure for arylthiolation



Under argon atmosphere, to a stirred solution of 2 (50 mg, 0.105 mmol) in MeCN (9 mL) was added 2 eq. of thiol (0.210 mmol) and 2 eq. of K<sub>2</sub>CO<sub>3</sub> (29 mg, 0.210 mmol). The solution was stirred at room temperature for 2 h. After the reaction, chloroform was added to the reaction mixture and then filtrated. The filtrate was evaporated under reduced pressure. The residue was purified by silica gel column chromatography using hexane as an eluent.

# $1-(2,3,5,6-Tetrafluoro-4-(phenylthio)phenyl)-2-(2,3,4,5,6-pentafluorophenyl)-1,2-closo-C_2B_{10}H_{10}~(2a)$



**2a**: 29 mg, 49% yield, white solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.41 (m, 2H, Ar), 7.34 (m, 3H, Ar), 3.7-1.5 (br, 10H, B-H). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -158.2 (m, 2F), -145.5 (m, 1F), -130.9 (m, 2F), -130.3 (s, 2F), -129.2 (s, 2F).

<sup>11</sup>B NMR (96.0 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -0.321, -1.79, -8.25, -9.59. HRMS (FAB) calcd. for C<sub>20</sub>H<sub>15</sub>B<sub>10</sub>F<sub>9</sub>S [M]<sup>+</sup>: 568.1681, found 568.1699.

### 1,2-Bis(2,3,5,6-tetrafluoro-4-(phenylthio)phenyl)-1,2-closo-C2B10H10 (3a)



**3a**: 34 mg, 49% yield, yellow solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.34 (m, 10H, Ar), 3.7-1.5 (br, 10H, B-H). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>): δ (ppm) -131.2 (m, 4F, Ar), -130.2 (s, 4F, Ar). <sup>11</sup>B NMR (96.0 MHz, CDCl<sub>3</sub>): δ (ppm) -0.52, -1.81, -8.18,

-9.59. HRMS (FAB) calcd. for C<sub>26</sub>H<sub>20</sub>B<sub>10</sub>F<sub>8</sub>S<sub>2</sub> [M]<sup>+</sup>:658.1809, found 658.1812.

# 1-(2,3,5,6-Tetrafluoro-4-((4-trifluoromethyl)phenylthio)phenyl)-2-(2,3,4,5,6-pentafluorophenyl)-1,2-*closo*-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (2b)



(**2b**): 11 mg, 14% yield, white solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.58 (m, 2H, Ar), 7.44 (m, 2H, Ar), 3.8-1.5 (br, 10H, B-H). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>): δ (ppm) –158.1 (m, 2F, Ar), –145.3 (m, 1F, Ar), –129.8 (m, 2F, Ar), –129.4 (s, 2F, Ar), –129.2 (s, 2F, Ar), –62.78 (s, 3F, CF<sub>3</sub>). <sup>11</sup>B NMR (96.0 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -0.285, -1.67, -8.16, -9.59. HRMS (FAB) calcd. for C<sub>21</sub>H<sub>14</sub>B<sub>10</sub>F<sub>12</sub>S<sub>1</sub> [M]<sup>+</sup>:636.1555, found 636.1557.

1,2-Bis(2,3,5,6-tetrafluoro-4-((4-trifluoromethyl)phenylthio)phenyl)-1,2-*closo*-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (3b)



(**3b**): 39 mg, 47% yield, white solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.54 (m, 4H, Ar), 7.35 (m, 4H, Ar). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>): δ (ppm) -130.0 (m, 4F, Ar), -129.1 (s, 4F, Ar), -62.8 (s, 6F, CF<sub>3</sub>). <sup>11</sup>B NMR (96.0 MHz,

CDCl<sub>3</sub>):  $\delta$  (ppm) -0.124, -1.39, -8.21, -9.51. HRMS (APCI) calcd. for C<sub>28</sub>H<sub>18</sub>B<sub>10</sub>F<sub>14</sub>S<sub>2</sub> [M]<sup>+</sup>:794.1575, found 794.1568.

# 1-(2,3,5,6-Tetrafluoro-4-((4-methyl)phenylthio)phenyl)-2-(2,3,4,5,6-pentafluorophenyl)-1,2-*closo*-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (2c)



**2c**: 12 mg, 20% yield. white solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.36 (m, 2H, Ar), 7.12 (m, 2H, Ar), 2.35 (s, 3H, Me). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>): δ (ppm) -158.3 (m, 2F), -145.7 (m, 1F), -131.5 (m, 2F), -130.6 (s, 2F), -129.3

(s, 2F). <sup>11</sup>B NMR (96.0 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) -0.268, -1.82, -8.24, -9.66. HRMS (FAB) calcd. for C<sub>21</sub>H<sub>17</sub>B<sub>10</sub>F<sub>9</sub>S<sub>1</sub> [M]<sup>+</sup>:582.1838, found 582.1829.

#### 1,2-Bis(2,3,5,6-tetrafluoro-4-((4-methyl)phenylthio)phenyl)-1,2-closo-C2B10H10 (3c)



**3c**: 56 mg, 78% yield, yellow solid. <sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>): δ (ppm) 7.29 (m, 4H), 7.29 (m, 4H), 2.33 (s, 6H, Me). <sup>19</sup>F NMR (254 MHz, CDCl<sub>3</sub>): δ (ppm) –131.7 (m, 4F), –130.5 (s, 4F). <sup>11</sup>B NMR (96.0 MHz, CDCl<sub>3</sub>): δ (ppm) –0.468, –1.84, –8.27, –9.74. HRMS (FAB) calcd. for

C<sub>28</sub>H<sub>24</sub>B<sub>10</sub>F<sub>8</sub>S<sub>2</sub> [M]<sup>+</sup>:686.2122, found 686.2098.

#### 3. CV of hexafluorobenzene



**Fig. S1** CV of hexafluorobenzene (10 mM) in 0.1 M Bu<sub>4</sub>NClO<sub>4</sub>/DMF using a GC working electrode at a scan rate of 100 mV/s.

### 4. Electrochemical stability of 1



**Fig. S2** CV of **1** (1 mM) in 0.1 M Bu<sub>4</sub>NClO<sub>4</sub>/DMF using a GC working electrode at a scan rate of 10 mV/sec.

5. CVs of 1, 2a, 3a-c



**Fig. S3** CVs of **1**, **2a**, **3a-c** (1 mM) in 0.1 M Bu<sub>4</sub>NClO<sub>4</sub>/DMF using a GC working electrode at a scan rate of 10 mV/sec.



#### 6. UV-absorption and fluorescent spectra of 2a, 3a-c

**Fig. S4** UV-absorption and fluorescent spectra of **2a**, **3a-c**. Absorption spectra were recorded with  $1.0 \times 10^{-5}$  M solution in THF. Fluorescent spectra were recorded both in H<sub>2</sub>O/THF = 99/1 (v/v) ( $1.0 \times 10^{-5}$  M) excited at 300 nm, or in solid state excited at the absorption peak in THF solution.

### 7. Single crystal X-ray diffraction analysis of 1

Note: For the refinement of **3a**, unreasonably diffraction peaks, which presumably derived from crack of a single crystal or on-surface contaminates, were omitted.

| Crystal data                            | 1                | <b>3</b> a        |
|-----------------------------------------|------------------|-------------------|
| CCDC                                    | 2010815          | 2010816           |
| Empirical Formula                       | C14H10B10F10     | C26H20B10F8S2     |
| Formula Weight                          | 476.3            | 656.6             |
| Crystal Dimension, mm <sup>-3</sup>     | 0.30, 0.30, 0.30 | 0.15, 0.10, 0.10  |
| Crystal System                          | triclinic        | orthorhombic      |
| Space Group                             | P-1              | Pna2 <sub>1</sub> |
| a, Å                                    | 9.7685(13)       | 28.3905(12)       |
| b, Å                                    | 10.2940(14)      | 7.0545(4)         |
| c, Å                                    | 11.1361(15)      | 28.8336(15)       |
| $\alpha$ , deg                          | 116.860(3)       | 90                |
| β, deg                                  | 94.106(4)        | 90                |
| γ, deg                                  | 90.486(4)        | 90                |
| Volume, Å                               | 995.4(2)         | 5774.8(5)         |
| D <sub>calcd</sub> , g cm <sup>-3</sup> | 1.589            | 1.511             |
| Z                                       | 2                | 8                 |
| F(000)                                  | 468              | 2640              |
| Data Collection                         | Data Collection  | Data Collection   |
| Temperature, deg                        | 23               | -180              |
| 2θmax, deg                              | 55.02            | 55.22             |
| Tmin/Tmax                               | 0.7298 / 1.0000  | 0.4179 / 1.0000   |
| Refinement                              | Refinement       | Refinement        |
| No. of Observed Data                    | 2055             | 10537             |
| No. of Parameters                       | 347              | 829               |
| R1 <sup>a</sup> , wR2 <sup>b</sup>      | 0.0612, 0.2085   | 0.1171, 0.3603    |
| Goodness of Fit Indictor                | 1.092            | 1.459             |

| Table S1. Crystallographic data of 1 and 3a. |
|----------------------------------------------|
|----------------------------------------------|

 ${}^{a}R1 = \sum ||Fo| - |Fc|| / \sum |Fo| - {}^{b}wR2 = [\sum w ((Fo^{2} - Fc^{2})^{2} / \sum w (Fo^{2})^{2}]^{1/2} \quad w = [\sigma^{2}(Fo^{2})]^{-1}$ 

## 8. DFT calculation

**Table S2.** Cartesian coordinates of theoptimized structure for 1.

|   | Х          | Y          | Z          |
|---|------------|------------|------------|
| В | 0.8850321  | 4.2912163  | -0.011622  |
| В | 1.4633461  | 2.8562242  | 0.8693371  |
| В | 0.018153   | 3.7138653  | 1.4401591  |
| В | 1.4412451  | 2.8558322  | -0.9072821 |
| В | -0.8849381 | 4.2912243  | 0.010904   |
| В | 0.017271   | 1.9418921  | 1.3936371  |
| В | -0.018064  | 3.7137533  | -1.4408221 |
| В | -1.4411611 | 2.8559322  | 0.9066771  |
| В | -0.017198  | 1.9417932  | -1.3941581 |
| В | -1.4632651 | 2.8561552  | -0.8699411 |
| С | -0.9416511 | 1.5088421  | 0.011541   |
| С | 0.9417211  | 1.5088281  | -0.01202   |
| Н | -2.4589902 | 2.7198622  | -1.4952611 |
| Н | -2.4209022 | 2.7176722  | 1.5567881  |
| Н | -1.5342901 | 5.2849874  | 0.018791   |
| Н | -0.031642  | 4.2795793  | -2.4837202 |
| Н | 1.5343921  | 5.2849734  | -0.019581  |
| Н | 2.4209742  | 2.7174452  | -1.5573941 |
| Н | 2.4590732  | 2.7200282  | 1.4946601  |
| Н | 0.031736   | 4.2797913  | 2.4830032  |
| Н | 0.030673   | 1.2453691  | 2.3286162  |
| Н | -0.030614  | 1.2453051  | -2.3291452 |
| С | -1.7106041 | 0.212497   | 0.017705   |
| С | -2.1703862 | -0.408014  | -1.1666521 |
| С | -2.1171102 | -0.432898  | 1.2080481  |
| С | -2.8959782 | -1.5977261 | -1.1708391 |
| С | -2.8418582 | -1.6231021 | 1.2196431  |
| С | -3.2299832 | -2.2191112 | 0.026128   |
| С | 1.7106441  | 0.212457   | -0.017879  |
| С | 2.1166952  | -0.433589  | -1.2080201 |
| С | 2.1708432  | -0.407446  | 1.1666441  |
| С | 2.8413462  | -1.6238581 | -1.2192461 |
| С | 2.8963542  | -1.5972031 | 1.1712001  |
| С | 3.2298582  | -2.2192612 | -0.025558  |
| F | -3.9272123 | -3.3550093 | 0.029882   |
| F | -3.1813822 | -2.1832942 | 2.3862122  |
| F | -1.8561141 | 0.078301   | 2.4169562  |
| F | -3.2880983 | -2.1332392 | -2.3324052 |
| F | -1.9629322 | 0.128683   | -2.3747372 |
| F | 1.9638902  | 0.129911   | 2.3745202  |
| F | 3.2888812  | -2.1321162 | 2.3329042  |

| F | 3.9270063 | -3.3552103 | -0.028956  |
|---|-----------|------------|------------|
| F | 3.1804092 | -2.1846922 | -2.3856422 |
| F | 1.8553461 | 0.077005   | -2.4171082 |

**Table S3.** Cartesian coordinates of theoptimized structure for 1<sup>--</sup>.

|   | Х         | Y         | Z         |
|---|-----------|-----------|-----------|
| В | 0.876649  | 4.155059  | -0.000134 |
| В | 1.503239  | 2.75353   | 0.901051  |
| В | -0.000003 | 3.508007  | 1.431795  |
| В | 1.503303  | 2.753633  | -0.90135  |
| В | -0.876672 | 4.155091  | -0.00012  |
| В | -0.000118 | 1.687318  | 1.215848  |
| В | -0.000045 | 3.507911  | -1.432006 |
| В | -1.503377 | 2.753746  | 0.901188  |
| В | 0.000003  | 1.687235  | -1.215935 |
| В | -1.503311 | 2.753523  | -0.901211 |
| С | -1.218267 | 1.418652  | 0.000102  |
| С | 1.218151  | 1.41861   | -0.000174 |
| Н | -2.468438 | 2.745361  | -1.59616  |
| Н | -2.468521 | 2.745633  | 1.596108  |
| Н | -1.490623 | 5.178752  | -0.000186 |
| Н | -0.000162 | 4.067048  | -2.485576 |
| Н | 1.490636  | 5.178698  | -0.000137 |
| Н | 2.468447  | 2.745436  | -1.596271 |
| Н | 2.468365  | 2.745375  | 1.596003  |
| Н | 0.000132  | 4.067216  | 2.485326  |
| Н | 0.00006   | 0.967557  | 2.151006  |
| Н | -0.000211 | 0.967409  | -2.151044 |
| С | -2.082125 | 0.226216  | 0.000121  |
| С | -2.546688 | -0.390954 | -1.18601  |
| С | -2.546604 | -0.391045 | 1.186252  |
| С | -3.343826 | -1.531402 | -1.194601 |
| С | -3.343743 | -1.531491 | 1.194822  |
| С | -3.745862 | -2.117391 | 0.000102  |
| С | 2.081997  | 0.226159  | -0.000122 |
| С | 2.546445  | -0.391192 | -1.186222 |
| С | 2.546734  | -0.390828 | 1.186037  |
| С | 3.343643  | -1.531596 | -1.194732 |
| С | 3.343942  | -1.531228 | 1.194688  |
| С | 3.745883  | -2.117348 | 0.000019  |
| F | -4.513483 | -3.224642 | 0.000086  |
| F | -3.74401  | -2.067924 | 2.365534  |
| F | -2.249496 | 0.119547  | 2.39452   |
| F | -3.744162 | -2.067757 | -2.365326 |
| F | -2.249658 | 0.119742  | -2.394255 |
| F | 2.24995   | 0.120094  | 2.394245  |
| F | 3.744475  | -2.06738  | 2.365438  |
| F | 4.513608  | -3.224527 | 0.000094  |

| F | 3.74389  | -2.068104 | -2.365417 |
|---|----------|-----------|-----------|
| F | 2.249317 | 0.119314  | -2.39452  |

**Table S4.** Cartesian coordinates of theoptimized structure for  $1^{2-}$ .

|   | Х          | Y          | Z          |
|---|------------|------------|------------|
| В | 0.8815344  | 4.0959742  | 0.0002805  |
| В | 1.5291774  | 2.7282437  | 0.8933032  |
| В | -0.0006072 | 3.412945   | 1.436607   |
| В | 1.5302348  | 2.7285888  | -0.8923359 |
| В | -0.8815322 | 4.095975   | -0.0004297 |
| В | -0.0005006 | 1.5798962  | 1.148079   |
| В | 0.0006087  | 3.4128871  | -1.4367287 |
| В | -1.5302341 | 2.7286257  | 0.8922412  |
| В | 0.0004999  | 1.5798496  | -1.1481268 |
| В | -1.5291763 | 2.7282095  | -0.8933979 |
| С | -1.2655033 | 1.3637144  | -0.0001005 |
| С | 1.2655025  | 1.3637133  | 0.0000604  |
| Н | -2.5168687 | 2.7671229  | -1.5671854 |
| Н | -2.5186482 | 2.7679301  | 1.56497    |
| Н | -1.4592494 | 5.1495861  | -0.0007299 |
| Н | 0.0007557  | 3.9763938  | -2.4974149 |
| Η | 1.4592523  | 5.1495848  | 0.0005382  |
| Н | 2.518649   | 2.7678661  | -1.5650659 |
| Н | 2.5168702  | 2.767182   | 1.5670891  |
| Н | -0.0007541 | 3.9764942  | 2.4972706  |
| Н | -0.0005172 | 0.8534499  | 2.087979   |
| Н | 0.0005159  | 0.8533649  | -2.0879982 |
| С | -2.1739521 | 0.2298444  | -0.0002658 |
| С | -2.6743308 | -0.383809  | -1.1843698 |
| С | -2.6749149 | -0.3832453 | 1.1838629  |
| С | -3.5115384 | -1.4921715 | -1.1912194 |
| С | -3.5121349 | -1.4915856 | 1.1908414  |
| С | -3.9426511 | -2.068272  | -0.000161  |
| С | 2.1739503  | 0.2298429  | 0.0002651  |
| С | 2.6748596  | -0.383324  | -1.183846  |
| С | 2.6743832  | -0.3837323 | 1.1843868  |
| С | 3.5120789  | -1.4916649 | -1.1907906 |
| С | 3.5115936  | -1.4920927 | 1.1912704  |
| С | 3.9426515  | -2.0682717 | 0.00023    |
| F | -4.7290262 | -3.1811863 | -0.0000835 |
| F | -3.9372305 | -2.0187934 | 2.3705472  |
| F | -2.364248  | 0.1168454  | 2.4012694  |
| F | -3.9359697 | -2.0200061 | -2.3708854 |
| F | -2.3629145 | 0.1154383  | -2.4019198 |
| F | 2.363036   | 0.1156041  | 2.4019177  |
| F | 3.9360829  | -2.0198471 | 2.3709514  |
| F | 4.7290283  | -3.1811847 | 0.0001895  |

| F | 3.9371185 | -2.0189514 | -2.3704814 |
|---|-----------|------------|------------|
| F | 2.364124  | 0.1166785  | -2.4012713 |

**Table S5.** Cartesian coordinates of theoptimized structure for 2a.

|   | Х          | Y          | Ζ          |
|---|------------|------------|------------|
| В | 2.0804831  | 4.3734389  | 0.5613432  |
| В | 1.2090431  | 3.6026586  | 1.9099402  |
| В | 0.3011665  | 4.4964076  | 0.6739662  |
| В | 2.5374913  | 2.7395399  | 1.1044451  |
| В | 1.0974506  | 4.2265631  | -0.9028007 |
| В | -0.3079482 | 2.9303136  | 1.2386399  |
| В | 2.4550404  | 3.0971733  | -0.6321968 |
| В | -0.4056724 | 3.3618954  | -0.4945369 |
| В | 1.7728723  | 1.5788542  | -0.0229902 |
| В | 0.9226703  | 2.4983491  | -1.2999377 |
| С | 0.0488863  | 1.8002208  | -0.0318707 |
| С | 1.1008683  | 1.9585757  | 1.5328551  |
| Н | 0.8032462  | 1.9879177  | -2.3612139 |
| Н | -1.4808509 | 3.4730857  | -0.9764712 |
| Н | 1.0993763  | 5.0383006  | -1.769319  |
| Н | 3.4409972  | 3.0830888  | -1.2924946 |
| Н | 2.8030997  | 5.2925613  | 0.7683641  |
| Н | 3.513584   | 2.3919759  | 1.677236   |
| Н | 1.2305371  | 3.8759136  | 3.061613   |
| Н | -0.2721784 | 5.4954982  | 0.9593151  |
| Н | -1.2603881 | 2.7751252  | 1.8935774  |
| Н | 2.2181387  | 0.5186163  | -0.2157235 |
| С | -0.8490124 | 0.6092563  | -0.2306243 |
| С | -0.4384046 | -0.5609223 | -0.9057754 |
| С | -2.2073919 | 0.5974861  | 0.1606769  |
| С | -1.2738456 | -1.6603595 | -1.0865878 |
| С | -3.0414878 | -0.4989241 | -0.0343453 |
| С | -2.5968559 | -1.6788184 | -0.6383234 |
| С | 1.0534825  | 0.8947593  | 2.599035   |
| С | 1.9447317  | -0.2022354 | 2.6264969  |
| С | 0.1761822  | 0.9596815  | 3.7057573  |
| С | 1.9122862  | -1.1850097 | 3.614018   |
| С | 0.131937   | -0.0154755 | 4.7002699  |
| С | 0.9961224  | -1.1022    | 4.6550231  |
| F | -4.3201904 | -0.3822646 | 0.3546154  |
| F | -2.7943057 | 1.6769508  | 0.6982797  |
| F | -0.7669244 | -2.7284692 | -1.7243549 |
| F | 0.7876738  | -0.6774091 | -1.4355422 |
| F | -0.6563635 | 1.9904542  | 3.8916961  |
| F | -0.7346086 | 0.1056617  | 5.7131284  |
| F | 2.7799781  | -2.2029676 | 3.568686   |
| F | 2.9113085  | -0.3537442 | 1.7139151  |

| S | -3.6293796 | -3.0927818 | -0.9566369 |
|---|------------|------------|------------|
| С | -4.4218776 | -3.367971  | 0.6390102  |
| С | -5.8159312 | -3.2859594 | 0.7257647  |
| С | -3.665564  | -3.7560943 | 1.7528177  |
| С | -6.4526617 | -3.5877498 | 1.932886   |
| Η | -6.3947474 | -2.9768183 | -0.1394529 |
| С | -4.3076942 | -4.0352241 | 2.9608211  |
| Η | -2.5859528 | -3.8475025 | 1.6723052  |
| С | -5.7011176 | -3.95499   | 3.0518159  |
| Η | -7.5354296 | -3.5230162 | 1.999021   |
| Η | -3.7199999 | -4.3305423 | 3.8261222  |
| Η | -6.198233  | -4.1814273 | 3.9911852  |
| F | 0.9607596  | -2.0380182 | 5.6049114  |
|   |            |            |            |

**Table S6.** Cartesian coordinates of theoptimized structure for **3a**.

|   | Х          | Y         | Ζ          |
|---|------------|-----------|------------|
| В | -1.2946321 | 4.5176253 | 1.3067141  |
| В | -2.3453532 | 4.8925013 | -0.084519  |
| В | -1.4549821 | 6.1980945 | 0.7267761  |
| В | -1.2996821 | 3.4578613 | -0.120347  |
| В | 0.136479   | 5.5572784 | 1.2300491  |
| В | -1.5167551 | 6.1508334 | -1.0414321 |
| В | 0.240727   | 3.8689793 | 0.659682   |
| В | 0.001809   | 6.5983105 | -0.204727  |
| В | 0.129898   | 3.8931703 | -1.1067521 |
| В | 1.0470471  | 5.1633974 | -0.251465  |
| С | 0.03866    | 5.5716254 | -1.5525281 |
| С | -1.4679941 | 4.4663183 | -1.4718841 |
| Н | 2.2124792  | 5.2315234 | -0.451452  |
| Н | 0.422209   | 7.6924966 | -0.36241   |
| Н | 0.707861   | 5.9475734 | 2.1951382  |
| Н | 0.8804351  | 3.0287862 | 1.2015011  |
| Н | -1.7693401 | 4.1405923 | 2.3278402  |
| Н | -1.7329841 | 2.3620562 | -0.221073  |
| Н | -3.5247143 | 4.8225333 | -0.169128  |
| Н | -2.0395571 | 7.0457375 | 1.3171281  |
| Н | -2.0949231 | 6.9065645 | -1.7153331 |
| Н | 0.639595   | 3.1283532 | -1.8244331 |
| С | 0.56701    | 6.0366734 | -2.8843812 |
| С | 1.4944211  | 5.3057484 | -3.6571813 |
| С | 0.233433   | 7.2964855 | -3.4335552 |
| С | 1.9651071  | 5.7496374 | -4.8902824 |
| С | 0.7236551  | 7.7447206 | -4.6562643 |
| С | 1.5824751  | 6.9734015 | -5.4448474 |
| С | -2.1213422 | 3.9825983 | -2.7401992 |
| С | -1.8444741 | 2.7125272 | -3.2973942 |
| С | -3.1146322 | 4.7052603 | -3.4347882 |
| С | -2.4489922 | 2.2466322 | -4.4608853 |
| С | -3.7003663 | 4.2436353 | -4.6108073 |
| С | -3.3754642 | 3.0091622 | -5.1782334 |
| F | 0.36282    | 8.9735287 | -5.0563494 |
| F | -0.54129   | 8.1695026 | -2.7742662 |
| F | 2.8259212  | 4.9559414 | -5.5511424 |
| F | 1.9954431  | 4.1336713 | -3.2411162 |
| F | -3.5700683 | 5.8866824 | -2.9935602 |
| F | -4.6164563 | 5.0308424 | -5.2013454 |
| F | -2.1310812 | 1.0098901 | -4.8727054 |
| F | -1.0131671 | 1.8470981 | -2.6998822 |

| S | 2.2754402  | 7.4986895  | -6.9959775 |
|---|------------|------------|------------|
| S | -4.2115433 | 2.4618912  | -6.6491265 |
| С | 0.8522041  | 8.1811116  | -7.8639966 |
| С | 0.9259821  | 9.4957447  | -8.3370226 |
| С | -0.267394  | 7.3895865  | -8.1508706 |
| С | -0.125155  | 10.0178877 | -9.0962626 |
| Н | 1.7914651  | 10.1082707 | -8.1019336 |
| С | -1.3236071 | 7.9262355  | -8.8890126 |
| Η | -0.310571  | 6.3616735  | -7.8016566 |
| С | -1.2526331 | 9.2389867  | -9.3667087 |
| Η | -0.066032  | 11.0394488 | -9.4621747 |
| Η | -2.1962862 | 7.3142585  | -9.1015847 |
| Н | -2.0731122 | 9.6509617  | -9.9478687 |
| С | -2.8760492 | 1.7625261  | -7.6350786 |
| С | -2.9961312 | 0.441797   | -8.0808286 |
| С | -1.7855471 | 2.5458592  | -8.0344916 |
| С | -2.0203601 | -0.094639  | -8.9258726 |
| Η | -3.8377913 | -0.164278  | -7.7586296 |
| С | -0.8027911 | 1.9951491  | -8.8587036 |
| Н | -1.7078831 | 3.5782703  | -7.7049896 |
| С | -0.9205061 | 0.676227   | -9.3094236 |
| Н | -2.1152772 | -1.1209301 | -9.2703936 |
| Н | 0.048277   | 2.6008272  | -9.1588827 |
| Н | -0.157769  | 0.253211   | -9.9574537 |

**Table S7.** Cartesian coordinates of theoptimized structure for **3b**.

|   | Х          | Y          | Z          |
|---|------------|------------|------------|
| В | 0.8881025  | 3.7469864  | -0.8951062 |
| В | 1.4252521  | 2.8051502  | 0.5127255  |
| В | 2.0983893  | 4.4218922  | 0.2352302  |
| В | -0.2953657 | 2.8316277  | 0.0739305  |
| В | 0.7999612  | 5.451838   | -0.4284951 |
| В | 1.6230919  | 3.949265   | 1.8759697  |
| В | -0.6926726 | 4.4684326  | -0.4850329 |
| В | 1.2787384  | 5.5973353  | 1.282439   |
| В | -1.0855309 | 3.992521   | 1.1766751  |
| В | -0.4389228 | 5.6268903  | 0.8328865  |
| С | 0.1105398  | 4.7521784  | 2.1790329  |
| С | 0.2123544  | 2.9550687  | 1.6894315  |
| Η | -1.1336771 | 6.5571794  | 1.0572455  |
| Η | 1.8055489  | 6.5022534  | 1.8357989  |
| Η | 1.0077502  | 6.3449766  | -1.1826809 |
| Н | -1.5638236 | 4.6385367  | -1.2726926 |
| Η | 1.1665968  | 3.3853793  | -1.9911668 |
| Н | -0.8927466 | 1.8494634  | -0.2106119 |
| Н | 2.0560324  | 1.8049435  | 0.5318089  |
| Н | 3.2469201  | 4.554826   | -0.0320579 |
| Н | 2.3576704  | 3.7409267  | 2.7570928  |
| Н | -2.1611772 | 3.8277206  | 1.5958643  |
| С | -0.2763714 | 5.1820574  | 3.5729367  |
| С | -1.5883612 | 5.5938558  | 3.8962327  |
| С | 0.6532453  | 5.34995    | 4.6230736  |
| С | -1.9376284 | 6.0936173  | 5.1498343  |
| С | 0.2988711  | 5.8535554  | 5.871609   |
| С | -1.0071467 | 6.2402319  | 6.1797049  |
| С | -0.02866   | 1.8408348  | 2.6782751  |
| С | -1.3040517 | 1.2911297  | 2.9360725  |
| С | 1.0304529  | 1.1596963  | 3.3182844  |
| С | -1.4980539 | 0.1927575  | 3.7691399  |
| С | 0.8290724  | 0.06258    | 4.154456   |
| С | -0.4407595 | -0.4576723 | 4.4088422  |
| F | 1.273787   | 5.996246   | 6.7833249  |
| F | 1.9572966  | 5.0839863  | 4.4620959  |
| F | -3.2162457 | 6.454124   | 5.3379368  |
| F | -2.5826128 | 5.5592902  | 2.9990841  |
| F | 2.31057    | 1.5092909  | 3.1346117  |
| F | 1.9139607  | -0.5025614 | 4.7055431  |
| F | -2.7529838 | -0.259975  | 3.9179671  |
| F | -2.4102974 | 1.7640761  | 2.3446341  |

| S | -1.4595952 | 7.0265956  | 7.7174521  |
|---|------------|------------|------------|
| S | -0.6441535 | -1.9552121 | 5.3599208  |
| С | -1.073821  | 5.7490629  | 8.9326067  |
| С | 0.0501363  | 5.8886052  | 9.7520692  |
| С | -1.9565366 | 4.6761741  | 9.1225842  |
| С | 0.3037333  | 4.9474545  | 10.7533336 |
| Н | 0.7289952  | 6.7219922  | 9.6036915  |
| С | -1.7013861 | 3.7355386  | 10.1174779 |
| Н | -2.8447103 | 4.5864177  | 8.5045839  |
| С | -0.5684979 | 3.8718399  | 10.9304132 |
| Н | 1.1781749  | 5.05267    | 11.3863783 |
| Н | -2.3904491 | 2.9104038  | 10.2701825 |
| С | -1.6996126 | -1.4094138 | 6.718644   |
| С | -3.0475621 | -1.7793755 | 6.741397   |
| С | -1.1425839 | -0.7072419 | 7.7971342  |
| С | -3.846427  | -1.4349531 | 7.8349423  |
| Н | -3.473823  | -2.3257197 | 5.9064285  |
| С | -1.9397512 | -0.360126  | 8.885165   |
| Н | -0.0885141 | -0.4470303 | 7.7907048  |
| С | -3.2928687 | -0.723096  | 8.9007496  |
| Н | -4.8933818 | -1.7179745 | 7.8510845  |
| Н | -1.505383  | 0.1750873  | 9.7241797  |
| С | -0.3151592 | 2.8336574  | 11.9929565 |
| С | -4.1315542 | -0.3265802 | 10.0883646 |
| F | -0.1492289 | 1.5937168  | 11.4460092 |
| F | 0.7922164  | 3.0897504  | 12.7236719 |
| F | -1.3537647 | 2.7301933  | 12.8578925 |
| F | -5.4087683 | -0.7578754 | 9.9965495  |
| F | -3.6255534 | -0.8092595 | 11.2495685 |
| F | -4.1824193 | 1.0305617  | 10.2293381 |

**Table S8.** Cartesian coordinates of theoptimized structure for **3c**.

|   | Х          | Y         | Ζ          |
|---|------------|-----------|------------|
| В | 0.460757   | 4.8788714 | -0.053824  |
| В | -0.306744  | 3.6843633 | -1.1328071 |
| В | 0.077802   | 3.2406402 | 0.543642   |
| В | -0.8582701 | 5.3727224 | -1.1393611 |
| В | -0.19851   | 4.6738213 | 1.5761611  |
| В | -1.4832101 | 2.7706922 | -0.148132  |
| В | -0.8238941 | 5.9773004 | 0.528903   |
| В | -1.3842291 | 3.3489062 | 1.5440411  |
| В | -2.3571892 | 5.4204924 | -0.16014   |
| В | -1.9445391 | 5.0342694 | 1.5336471  |
| С | -2.6499252 | 3.8565233 | 0.541017   |
| С | -1.9524551 | 4.0817723 | -1.1894311 |
| Н | -2.6347742 | 5.4822004 | 2.3855772  |
| Н | -1.6661541 | 2.5921282 | 2.4082382  |
| Н | 0.429806   | 4.8845803 | 2.5616242  |
| Η | -0.654368  | 7.1323965 | 0.7430811  |
| Н | 1.5708351  | 5.2450854 | -0.26347   |
| Н | -0.8018881 | 6.0548444 | -2.1040781 |
| Н | 0.137257   | 3.1547932 | -2.0947122 |
| Η | 0.8988341  | 2.4143032 | 0.7714831  |
| Н | -1.8021391 | 1.6797051 | -0.408776  |
| Н | -3.2561052 | 6.1074444 | -0.442819  |
| С | -4.0584483 | 3.3592552 | 0.7297321  |
| С | -5.1883664 | 4.2040943 | 0.7668611  |
| С | -4.3562793 | 1.9974041 | 0.9670391  |
| С | -6.4848585 | 3.7230463 | 0.9289081  |
| С | -5.6521474 | 1.5248221 | 1.1498961  |
| С | -6.7678405 | 2.3660762 | 1.1037951  |
| С | -2.8186102 | 3.8229533 | -2.3934772 |
| С | -3.5071263 | 4.8569843 | -3.0690302 |
| С | -2.9580112 | 2.5557052 | -2.9988452 |
| С | -4.3056713 | 4.6327503 | -4.1862513 |
| С | -3.7748033 | 2.3335422 | -4.1042983 |
| С | -4.4956143 | 3.3567512 | -4.7251183 |
| F | -5.8039404 | 0.215668  | 1.4027241  |
| F | -3.3897402 | 1.0758971 | 1.0871421  |
| F | -7.4876666 | 4.6190703 | 0.9196881  |
| F | -5.0799794 | 5.5365474 | 0.66112    |
| F | -2.2944032 | 1.4800051 | -2.5506702 |
| F | -3.8523183 | 1.0778531 | -4.5793723 |
| F | -4.8808173 | 5.7003374 | -4.7609423 |
| F | -3.3855282 | 6.1407074 | -2.7015022 |

| S | -8.4476646 | 1.8374251  | 1.3549851  |
|---|------------|------------|------------|
| S | -5.4774954 | 3.0007222  | -6.1651355 |
| С | -8.5586436 | 0.350853   | 0.346402   |
| С | -8.9141377 | -0.8562261 | 0.9536331  |
| С | -8.3924806 | 0.405536   | -1.0439281 |
| С | -9.0962887 | -2.0004001 | 0.17187    |
| Η | -9.0370926 | -0.9062911 | 2.0316401  |
| С | -8.5541916 | -0.7481071 | -1.8086201 |
| Η | -8.1410836 | 1.3469101  | -1.5250101 |
| С | -8.9108287 | -1.9711811 | -1.2161101 |
| Η | -9.3740497 | -2.9336682 | 0.656399   |
| Η | -8.4138356 | -0.695163  | -2.8863762 |
| С | -6.9837595 | 3.9403303  | -5.8690584 |
| С | -7.3795075 | 4.9003064  | -6.8037985 |
| С | -7.8109116 | 3.6557043  | -4.7742163 |
| С | -8.5938246 | 5.5724894  | -6.6383095 |
| Н | -6.7388295 | 5.1308594  | -7.6500245 |
| С | -9.0075706 | 4.3500843  | -4.6088183 |
| Н | -7.5206316 | 2.8924782  | -4.0572393 |
| С | -9.4225607 | 5.3188594  | -5.5381674 |
| Η | -8.8910056 | 6.3169385  | -7.3733965 |
| Η | -9.6370907 | 4.1267603  | -3.7497883 |
| С | -9.0742286 | -3.2156202 | -2.0571291 |
| Η | -9.7022817 | -3.0249562 | -2.9354722 |
| Η | -8.1034506 | -3.5731293 | -2.4246752 |
| Η | -9.5319107 | -4.0286883 | -1.4846501 |
| С | -10.720692 | 6.0666804  | -5.3424744 |
| Η | -11.554451 | 5.3782474  | -5.1592174 |
| Η | -10.661492 | 6.7405695  | -4.4779633 |
| Н | -10.970039 | 6.6723685  | -6.2194975 |

**Table S9.** Cartesian coordinates of theoptimizedstructurefordiphenyl-o-carborane.

|   | Х        | Y         | Z         |
|---|----------|-----------|-----------|
| В | 3.50874  | 0.887985  | -0.038834 |
| В | 2.071697 | 1.404458  | -0.951838 |
| В | 2.943476 | -0.062806 | -1.44228  |
| В | 2.070187 | 1.479474  | 0.821276  |
| В | 3.508745 | -0.887964 | 0.038856  |
| В | 1.176895 | -0.060301 | -1.409333 |
| В | 2.943471 | 0.062825  | 1.442296  |
| В | 2.070199 | -1.479458 | -0.821266 |
| В | 1.176882 | 0.060309  | 1.409333  |
| В | 2.071697 | -1.404443 | 0.951852  |
| С | 0.721881 | -0.880572 | 0.040302  |
| С | 0.721875 | 0.880574  | -0.040285 |
| Η | 1.918017 | -2.378492 | 1.608494  |
| Η | 1.92279  | -2.507578 | -1.390591 |
| Η | 4.502559 | -1.538053 | 0.065609  |
| Η | 3.516323 | 0.111109  | 2.481654  |
| Η | 4.502547 | 1.538084  | -0.065576 |
| Η | 1.922757 | 2.507584  | 1.390614  |
| Н | 1.917995 | 2.378507  | -1.608474 |
| Н | 3.51633  | -0.111096 | -2.481638 |
| Н | 0.453156 | -0.110748 | -2.337952 |

| Η | 0.453169  | 0.110748  | 2.337974  |
|---|-----------|-----------|-----------|
| С | -0.588351 | -1.628361 | 0.057157  |
| С | -1.283611 | -1.853254 | 1.255844  |
| С | -1.109281 | -2.171143 | -1.128988 |
| С | -2.473136 | -2.583458 | 1.264706  |
| Η | -0.895918 | -1.467792 | 2.191048  |
| С | -2.29727  | -2.902992 | -1.118586 |
| Η | -0.581764 | -2.034202 | -2.065992 |
| С | -2.987733 | -3.108683 | 0.077851  |
| Η | -2.993249 | -2.743613 | 2.205367  |
| Η | -2.678615 | -3.315169 | -2.049014 |
| Η | -3.912935 | -3.678815 | 0.086217  |
| С | -0.58836  | 1.628357  | -0.057161 |
| С | -1.109347 | 2.171064  | 1.128994  |
| С | -1.283569 | 1.853317  | -1.255865 |
| С | -2.29734  | 2.902907  | 1.118582  |
| Η | -0.581869 | 2.034071  | 2.066012  |
| С | -2.473098 | 2.583514  | -1.264736 |
| Η | -0.895832 | 1.467916  | -2.191076 |
| С | -2.987752 | 3.108665  | -0.077872 |
| Η | -2.678728 | 3.315026  | 2.049019  |
| Η | -2.99317  | 2.743723  | -2.205411 |
| Η | -3.912957 | 3.67879   | -0.086245 |

### 9. NMR Charts



Fig. S5 <sup>19</sup>F NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25 °C) of perfluorotolane.







**Fig. S9** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **2a**.

270.05CDCL3



Fig. S10  $^{19}\mathrm{F}$  NMR spectrum (470.55 MHz, CDCl<sub>3</sub>, 25 °C) of 2a.



Fig. S11 <sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of 2a.

270.05CDCL3



**Fig. S12** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **3a**.



Fig. S13  $^{19}$ F NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25 °C) of 3a.



**Fig. S14** <sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of **3a**.



**Fig. S15** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **2b**.



**Fig. S16** <sup>19</sup>F NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25 °C) of **2b**.



Fig. S17 <sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of 2b.



**Fig. S18** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **3b**.



Fig. S19  $^{19}\mathrm{F}$  NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25 °C) of 3b.



**Fig. S20**<sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of **3b**.



**Fig. S21** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **2c**.



Fig. S22  $^{19}$ F NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25 °C) of 2c.



**Fig. S23** <sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of **2c**.



**Fig. S24** <sup>1</sup>H NMR spectrum (270.05 MHz, CDCl<sub>3</sub>, 25 °C) of **3c**.



Fig. S25  $^{19}$ F NMR spectrum (254.05 MHz, CDCl<sub>3</sub>, 25  $^{\circ}$ C) of 3c.



**Fig. S26** <sup>11</sup>B NMR spectrum (96.00 MHz, CDCl<sub>3</sub>, 25 °C) of **3c**.

#### **10. Supporting References**

(1) T. Higashi, ABSCOR. Program for Absorption Correction.; Rigaku Corporation: Japan, 1995.

(2) D. Matsuo, X. Yang, X. A Harada, K. Morimoto, T. Kato, M. Yahiro, C. Adachi, A. Orita, J. Otera, *Chem. Lett.*, 2010, **39**, 1300-1302.

(3) M. E. El-Zaria, K. Keskar, A. R. Genady, J. A. Ioppolo, J. McNulty, J. F. Valliant, *Angew. Chem. Int. Ed.*, 2014, **126**, 5256-5260.

(4) H. Naito, Y. Morisaki, Y. Chujo, Angew. Chem. Int. Ed., 2015, 54, 5084-5087.