Supporting Information

Bistable spin-crossover in a new series of $[Fe(BPP-R)_2]^{2+}$ (BPP = 2,6-bis(pyrazol-1-yl)pyridine; R = CN) complexes

Kuppusamy Senthil Kumar,^{a,b}* Nicolas Del Giudice,^a Benoît Heinrich,^a Laurent Douce,^a and Mario Ruben^{a,b,c}*

aInstitut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg,

23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.

^bInstitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

^cInstitute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

*e-mail: kavinsenthil82@gmail.com; mario.ruben@kit.edu

Contents

S1. Representation of angular components of 1c	2
S2. UV-vis spectra of the ligand and complexes 1a and 2	4
S3. Spin-crossover characteristics of complexes 1b-d	5
S4. Differential scanning calorimetry studies of complexes 1c and 1d	7

S1. Representation of angular components of 1c

Chart S1. Structural model depicting angular components in $[Fe(1-BPP-CN)_2](BF_4)_2 \cdot CH_3CN$ (1c). The angles ϕ and θ represent the degree of distortion; complexes with ideal octahedral geometry have $\phi = 180^\circ$ and $\theta = 90^\circ$. The N{pyrazole}-Fe-N{pyrazole} clamp angle is represented as ψ .

Figure S1. (a) X-ray structure of complex **2-cryst** (CCDC 2010806). Counter anions are omitted for clarity, (b) Intermolecular short contacts observed in the crystal lattice of **2-cryst**, and (c) Non-terpyridine embrace lattice packing pattern observed for complex **2-cryst** in the crystal lattice.

Figure S2. Comparison between the powder XRD pattern of **2** and SCXRD pattern of **2-cryst**. The remarkable difference between the patterns indicate different organizations of the molecules in the crystal lattice of **2** and **2-cryst**. Such different molecular organizations caused the HS and LS states of **2** and **2-cryst**, respectively, at 293 K.

S2. UV-vis spectra of the ligand and complexes 1a and 2

Figure S3. UV-vis absorption spectra of the ligand and complexes 1a and 2. Spectrophotometric grade acetonitrile was used as a solvent.

Table S1. Absorption maxima (λ_{max}) and molar extinction coefficients (ϵ) of the ligands and complexes

Entry	$\lambda_{\max,abs}(\epsilon)$
	$[nm, (10^4 M^{-1} cm^{-1})]$
L	210 (2.06), 218 (1.82), 245
	(3.21), 249 (3.66), 270 (1.48),
	276 (1.36), 335 (1.47)
Complex 1a	210 (4.7), 218 (4.34), 244 (6.72),
	249 (7.49), 270 (3.41), 276 (3.2),
	334 (3.18)
Complex 2	210 (4.54), 218 (4.17), 245
	(6.58), 249 (7.36), 270 (3.28),
	276 (3.07), 333 (3.06)

S3. Spin-crossover characteristics of complexes 1b-d

Figure S4. (a) $\chi_M T$ versus *T* plots of complex **1b**, and (b) $\chi_M T$ versus *T* and $d(\chi_M T)/dT$ versus *T* plots of complex **1b**, corresponding to cycle 5. T_p is the temperature, where the centre of the shoulder-like region situated. The critical temperatures (T_c) associated with the cooling and heating branches are designated as $T_{c\downarrow}$ and $T_{c\uparrow}$, respectively.

Figure S5. (a-b) $\chi_M T$ versus *T* plots of complex **1b** measured at scan rates of 0.2 K/min and 10 K/min. $\chi_M T$ versus *T* and $d(\chi_M T)/dT$ versus *T* plots of complex **1b** measured at (c) 10 K/min and (d) 0.2 K/min in sweep mode. The critical temperatures (T_c) associated with the cooling and heating branches are designated as $T_{c\downarrow}$ and $T_{c\uparrow}$, respectively. Note, the magnetic measurements with 0.2 K/min scan rate were performed in sweep mode. The comparable nature of $\chi_M T$ versus *T* profiles and $\Delta T = 4$ K observed for both the scan rates in the sweep mode indicates scan rate independent nature of ΔT in **1b**.

Figure S6. (a) $\chi_M T$ versus *T* plots and (b-c) $d(\chi_M T)/dT$ versus *T* and $\chi_M T$ versus *T* plots of complex **1c**. The critical temperatures (T_c) associated with the cooling and heating branches are designated as $T_{c\downarrow}$ and $T_{c\uparrow}$, respectively.

Figure S7. (a) $\chi_M T$ versus *T* plots, and (b) $d(\chi_M T)/dT$ versus *T* and $\chi_M T$ versus *T* plots of complex **1d** corresponding to cycle 5. The critical temperatures (T_c) associated with the cooling and heating branches are designated as $T_{c\downarrow}$ and $T_{c\uparrow}$, respectively.

S4. Differential scanning calorimetry studies of complexes 1c and 1d

Figure S8. Differential scanning calorimetry (DSC) curves of complexes (a) solvent-free **1c** obtained after SQUID measurements and (b) **1d**. A scanning rate of 2 K/min, was employed; endotherm (up).