SUPPORTING INFORMATION

Electrocatalytic Water Oxidation Reaction Promoted by Cobalt-Prussian Blue and

its Thermal Decomposition Product Under Mild Conditions

Priscilla J. Zambiazi^a, Gabriel de O. Aparecido^a, Thiago V. de B. Ferraz^a, William S. J. Skinner^{b,a}, Rafael G. Yoshimura^a, Daniel E. B. Moreira^a, Rafael L. Germscheidt^a, Lucas L. Nascimento^c, Antonio Otavio T. Patrocinio^c, André L. B. Formiga^a, Juliano A. Bonacin^{*a}

^aInstitute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil.

^bImperial College London, Department of Materials, London, UK

^cLaboratory of Photochemistry and Materials Science, Institute of Chemistry, Universidade Federal de Uberlandia, 38400-902, Uberlandia, Brazil

*jbonacin@unicamp.br

Figure S1. Deconvolution of Raman bands in Lorentz curves for a) Co-Co PBA 60, b) Co-Co PBA 200 and c) Co₃O₄.

Scanning electron microscopy

All catalysts were analyzed by scanning electron microscopy (Figure S2). Co-Co PBA was heated up to 60 °C and showed a smooth surface. After the treatment at 200 °C was observed a slight increase in roughness of the surface of the particle. The thermal treatment up to 400 °C increases the roughness of the particles for the Co₃O₄ oxide.

Figure S2. Scanning electron microscopy for each material for cobalt Prussian blue-based materials subjected to heat treatment at (top to botton) 60 °C, 200 °C and 400 °C.

Table S1. Electrochemical parameters and stability data for Co-Co PBA 60, Co-Co PBA 200 and Co₃O₄

films.

	Со-Со РВА				
	60 °C	200°C	400 °C		
Thermal treatment	Co-Co PBA 60	Со-Со РВА 200	Co ₃ O ₄		
Inset Potential ^a (RHE)	1.74	1.69	1.81		
η @1 mA cm ⁻²	561	480	599		
η @5 mA cm ⁻²	910	656	758		
η @10 mA cm ⁻²	1141	910	931		
afel Slope (mV dec ⁻¹)	155	223	138		
Stability ^b (i/i_0),	1.0	0.98	0.51		

^aonset potential for faradaic process; ^b $i_0 = 20 \ min, i = 120 \ min$

Table S2. C	Comparison	of the	CO ₃ O ₄ catalysts j	for OER and	electrochemical	parameters.
-------------	------------	--------	--	-------------	-----------------	-------------

Catalysts	Method preparation	Electrolyte	ŋ @10 mA cm ⁻²	Tafel Slope (mV dec ⁻¹)	REF.
Co ₃ O ₄	Co-PBA Thermal Decomposition	0.1 M KPi	931	138	This work
Co ₃ O ₄ UNA	Electrodeposition	1.0 M KPi	207	60	[1]
		0.1 M KOH	148	48	
Co_3O_4	Microwave heating	1 M KOH	298	105	[2]
Co3O4		0.1 M KPi	511	104	[3]
nanocrystal	Hydrothermal				
Co ₃ O ₄	Thermal decomposition from Co(NO ₃) ₂ 6H ₂ O	1 M NaOH	433	96.7	[4]
*LINIA _ ultrathi	n nanoshoet arrays				

*UNA - ultrathin nanosheet arrays

Impedance Spectroscopy

Figure S3. Representation of the modified Randles equivalent circuit used for all catalysts.

Calibration curve for oxygen evolution determination

All oxygen evolution data were based on GC measurements. The GC was calibrated for oxygen through the dilution of analytical standard of O₂ in the photoelectrochemical cell previously filled with an Argon gas (Ar). The PEC was purged with Ar for at least 30 minutes to completely remove gas impurities. A known volume of O₂ was then added to the system and the resulted mixture was sampled and analysed. At least three injections were made for each data point, and the average values were used to make the calibration curve. Each sample was analyzed a single time, maintaining the same conditions used in the previous calibration.

Figure S4. Calibration curve obtained different amounts of added O₂ in the PEC system filled with Argon.

References

[1] Zhang, L., Liu, B., Zhang, N., Ma, M., 2018. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Research. doi:10.1007/s12274-017-1634-z

[2] Jadhav, A.R., Puguan, J.M.C., Kim, H., 2017. Microwave-Assisted Synthesis of a Stainless-Steel Mesh-Supported Co3O4 Microrod Array As a Highly Efficient Catalyst for Electrochemical Water Oxidation. ACS Sustainable Chemistry & Engineering.. doi:10.1021/acssuschemeng.7b03027

[3] Wu, J., Xue, Y., Yan, X., Yan, W., Cheng, Q., Xie, Y., 2012. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Research. doi:10.1007/s12274-012-0237-y

[4] Jeon, H. S., Jee, M. S., Kim, H., Ahn, S. J., Hwang, Y. J., & Min, B. K. (2015). Simple Chemical Solution Deposition of Co3O4 Thin Film Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 7(44), 24550–24555. doi:10.1021/acsami.5b06189