Electronic Supplementary Information

A four-parameter system for rationalising the electronic properties of transition metal-radical ligand complexes

Nicole M. Mews,^a Marc Reimann,^b Gerald Hörner,^c Martin Kaupp,^b Hartmut Schubert^a and Andreas Berkefeld^{*a}

^a Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

^b Institut für Chemie, Theoretical Chemistry–Quantum Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

^c Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 35, 95440 Bayreuth, Germany

Table of Contents

1	Ade	ditional Information on Group 10 Metal Radical-Ligand Coordination Compounds	. 2		
2	Gei	neral Information	. 3		
3	Syr	nthetic Procedures and Analytical Data	. 5		
4	Ad	ditional Solid-State Structure Data	10		
5	Ad	ditional NMR Spectroscopic Data	12		
6	Additional Information on UV/Vis/NIR Spectroscopy Data1				
7	Ad	ditional X-Band cw-EPR Data	19		
8	Additional Electrochemical Data				
9	Ad	ditional Computational Data	30		
ļ	9.1	General Information	30		
ļ	Э.2	Computational Results	31		
10	Ref	ferences	35		

1 Additional Information on Group 10 Metal Radical-Ligand Coordination Compounds

Fig S1 Compilation of properties of representative radical-ligand complexes of group 10 metals (from left to right): top row, entry no. 1, 1, 2, 2, 3, 3, 4 and $5;^4$ bottom row, entry no. 1, 5, 7, 2, 8, 3, 9, 4, 10, 11 and 5^{12} .

2 General Information

All manipulations of air- and moisture sensitive compounds were carried out under an atmosphere of dry argon using standard Schlenk or glove box techniques. Literature procedures were followed for the preparation of 5',5"'-di-tert-butyl-2,2"'',4,4"'',6,6"''-hexamethyl-[1,1':3',1"':4",1"':3"',1"''-quinque-phenyl]2',2"'-dithiol (Mes₂'Bu₂(SH)₂), ^{Mes}Ni-PCy₃,¹³ *trans*-py₂PtCl₂,¹⁴ *trans*-py₂PdCl₂,¹⁵ [(η^{5-} (MeC(O)C₅H₄)₂Fe]N(SO₂CF₃)₂,¹⁶ [(4-BrC₆H₄)₃N]BAr^F₄ (BAr^F₄ = (3,5-(F₃C)₂C₆H₃)₄B⁻),¹⁷ benzyl potassium,¹⁸ and 1,4-bis(4,6-di-tert-butylthiophenol-2-yl)benzene ('Bu₄(SH)₂).¹⁹

AgClO₄ (Alfa Aesar), 1,1'-diacetylferrocene (TCI), PPh₃ and PCy₃ (abcr) were used as received. High purity ferrocene (Fc, 99.5 %; TCI) was sublimed, and stored under argon. In general, solvents were purified and dried prior to use. Propylene carbonate (PC) was pre-dried and purified by fractional distillation under reduced pressure and percolation through a column of activated neutral alumina. 1,1,2,2-C₂H₂Cl₄ was dried over and distilled from P₂O₅ and degassed. Pentane and toluene were pre-dried over activated 3 Å molecular sieves (MS) and distilled from sodium benzophenone ketyl under argon. Et₃N was distilled from and stored over 3 Å MS. Dichloromethane stabilized with EtOH (CHEMSOLUTE, Th. Geyer) was first distilled from P₂O₅, then from K₂CO₃, and finally stored over activated basic alumina. Acetonitrile (MeCN) for use in electrochemical experiments was sequentially dried over and distilled from CaH₂ and P₂O₅, and finally percolated through activated neutral alumina. 1,2-Difluorobenzene (1,2-C₆H₄F₂; abcr) was dried and purified by percolation through a column of activated neutral alumina, and distilled onto activated neutral alumina prior to use. C₆D₆ was dried over and distilled from NaK alloy. CD₂Cl₂ and CDCl₃ were dried over and vacuum transferred from 3Å MS. In general, solvents were stored over 3Å MS under argon. Molecular sieves and alumina were activated by heating under dynamic vacuum (10⁻³ mbar) at $T \le 200$ °C for 24-48 h.

NMR data were acquired on a Bruker Avance III HDX 600 and an AVII+500 spectrometer (DOSY). ¹H and ¹³C{¹H}-NMR chemical shifts are referenced to the residual proton and naturally abundant carbon resonances of the solvents: 7.16/128.06 (C₆D₆), 5.32/53.84 (CD₂Cl₂), 7.26/77.16 (CDCl₃). ³¹P NMR chemical shifts are referenced to an external standard sample of 85 % H₃PO₄ set to 0 ppm. ¹⁹⁵Pt NMR chemical shifts are referenced to an external standard sample of 1.2 M hexachloroplatinate(IV) in D₂O set to 0 ppm.

EPR spectra were collected using 4 mm O.D. Wilmad quartz (CFQ) EPR tubes or 5 mm O.D. NMR tubes on a continuous wave X-band Bruker EMXmicro spectrometer, and are referenced to the Bruker Strong Pitch standard $g_{iso} = 2.0028$. EPR simulations were done with EasySpin (version 5.1.25)²⁰ and MATLAB and Statistic Toolbox Release R2016a (The MathWOrks, Inc., Natick, Massachusetts, United States). X-band cw-EPR spectral data were fitted using the easyfit tool included in EasySpin package (pepper for solid state and garlic for solution data).

In general, the sample concentrations for electronic spectra were corrected for temperature dependent changes of solvent density ρ by using a modified form of the Rackett equation.^{21, 22}

Evan's method²³ was employed to determine μ_{eff} in solution using a coaxial insert for 5 mm NMR sample tubes, $\chi_M^{dia} = -0.5 \times M$, M = dimensionless molecular weight of the sample and $\chi_M^{dia}(CD_2Cl_2) = -4.66 \times 10^{-5} \text{ cm}^3 \text{ mol}^{-1}$ were used to correct for diamagnetic susceptibilities of sample and solvent.²⁴

X-Ray diffraction data were collected on a Bruker Smart APEXII diffractometer with graphitemonochromated MoK_{α} radiation. The programs used were Bruker's APEX2 v2011.8-0, including SADABS for absorption correction and SAINT for structure solution, the WinGX suite of programs version 2013.3,²⁵ SHELXS and SHELXL for structure solution and refinement,^{26, 27} PLATON,²⁸ and ORTEP.²⁹ Crystals were, unless otherwise noted, coated in a perfluorinated polyether oil and mounted on a 100 µm MiTeGen MicroMountsTM loop that was placed on the goniometer head under a stream of dry nitrogen at 100 K.

Cyclic voltammetry (CV) measurements were performed under argon at 17 °C using a Julabo CF40 (resistance thermometer: Pt-100, temperature range: -40 to 50 °C) and an ECi 200 potentiostat (Nordic Electrochemistry) and BASi CV-50W voltammetric analyzer (Bioanalytical Systems, Inc.) in a gastight, full-glass, three-electrode cell setup. The ECi 200 potentiostat was controlled by using the EC4 DAQ (version 4.1.133.1, Nordic Electrochemistry) software, and data were treated with EC4 VIEW (version 1.2.55.1, Nordic Electrochemistry). nBu₄NPF₆ electrolyte (Alfa Aesar) was recrystallized 3 times from acetone/water and employed as a 0.1 M solution in CH₂Cl₂ and MeCN. A Pt disc electrode (Deutsche Metrohm GmbH & Co. KG, electro-active area = 0.080 ± 0.003 cm²) and a 1 mm coiled Ptwire were employed as working and counter electrodes. The Ag/Ag^+ redox couple, in the form of a 0.5 mm Ag wire in a 0.01 M AgClO₄/0.1 M nBu₄NPF₆ MeCN solution, served as a reference electrode. Cyclic voltammograms were corrected for capacitive currents of electrolyte solutions and overall cell resistance, and potentials are reported relative to $Fc/[Fc]^+$ in CH₂Cl₂, with $E^0(Fc/[Fc]^+/0.1$ M nBu_4NPF_6/CH_2Cl_2 , 17 °C) = 0.212 ± 0.001 V. The electro-active area of the Pt disc electrode was calculated from $Fc/[Fc]^+$ measurements in 0.1 M nBu_4NPF_6 solution in CH_2Cl_2 at various concentrations and potential sweep rates at 295 K, using $D(Fc, CH_2Cl_2, 295 K) = 2.2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1.30}$ The working electrode was rinsed with acetone, polished gently with a paste of 0.3 µm alumina (Deutsche Metrohm GmbH & Co. KG) in deionized water, rinsed thoroughly with plenty of deionized water, and finally acetone after each use. Periodic Fc/[Fc]⁺ reference measurements verified the electro-active surface area of the Pt electrode, and the stability of the potential of the Ag/Ag⁺ reference electrode.

3 Synthetic Procedures and Analytical Data

MesPt-PCy₃. Ligand Mes₂^tBu₂(SH)₂ (500 mg, 0.78 mmol) and benzyl potassium (203 mg, 1.56 mmol) were suspended in 8.6 g toluene at r.t. The reaction mixture was stirred at r.t. until all benzyl potassium was consumed and a clear yellow solution formed (30 min). The solvent was removed under vacuum and slightly yellow solid was obtained. Trans-py2PtCl2 (330 mg, 0.78 mmol) and PCy3 (218 mg, 0.78 mmol) were stirred in 31.89 g 1,2-C₆H₄F₂ until a white solid was formed (2 h). Ligand salt was diluted in 20 mL $1,2-C_6H_4F_2$ and was added to the stirring precursor suspension. The flask was washed with 5 mL $1,2-C_6H_4F_2$. After addition of the ligand salt the solution turns reddish-orange. The reaction mixture was stirred for 3 d at r.t. The green solution was centrifuged, filtered of and the remaining KCl was washed three times with 3 mL 1,2-C₆H₄F₂. The solvent was removed under vacuum and the dry green solid was diluted in $1,2-C_6H_4F_2$. The solution was concentrated until some crystals were formed and stored at 8 °C to obtain a crystalline MesPt-PCy₃×2(1,2-C₆H₄F₂) suitable for XRD analysis. The crystals were washed with pentane and dried under vacuum to afford 564 mg (58 %) MesPt-PCy₃×2(1,2-C₆H₄F₂). Unit cell parameters: a = 9.8530(2) Å, b = 31.8471(6) Å, c = 31.8471(6) Å, c20.0163(4) Å, $\alpha = 90^{\circ}$, $\beta = 93.0630(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 6271.93 Å³, Z = 2, I2/m, CCDC deposition number 1960797. Elemental analysis calcd for C69H88F2PPtS2: C, 66.53; H, 7.12; S, 5.15; F, 3.05. Found: C, 61.39; H, 7.67; S, 5.70. UV/vis/NIR (CH₂Cl₂, 20°C): λ(ε)=320 (33.0), 350 (16.4), 580 nm (0.2×10³ mol⁻¹dm³cm⁻¹). ¹H NMR (500 MHz, CD₂Cl₂, 25°C): *δ*=7.58 (s, 4H; H8, H9, H11, H12), 7.27 (d, ⁴*J*_{HH}=2.4 Hz, 2H; H3, H18), 6.87 (d, ⁴*J*_{HH}=2.4 Hz, 2H; H5, H16), 6.85 (s, 4H; H23, H25, H29, H31), 2.24 (s, 6H; H40, H43), 2.00 (s, 12H; H39, H41, H42, H44), 1.47-1.39 (m, 15H; PCy₃), 1.33 (s, 18H; H33-H38), 1.31-1.18 (m, 10H; PCy₃), 1.06-0.97 (m, 3H; PCy₃), 0.75 ppm (s, 5H; PCy₃). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂, 25°C): &=145.8 (C4, C17), 140.6 (C2, C13), 140.5 (C21, C27), 140.4 (C6, C15), 137.9 (C7, C10), 136.4 (C24, C30), 136.1 (C22, C26, C28, C32), 136 (d, ³*J*_{CP}=2.8 Hz; C1, C14), 128.2 (C23, C25, C29, C31), 127.8 (C5, C16), 122.3 (C3, C18), 34.4 (19, C20), 31.6 (C33-C38), 29.9 (PCy₃), 26.9 (PCy₃), 21.2 ppm (C40, C43). ³¹P NMR (CD₂Cl₂, 202 MHz): *δ*=31.68 (d, ¹*J*_{PPt}=4398 Hz) ¹³⁵Pt NMR (129 MHz, CD₂Cl₂, 25°C): δ = -4708 (d, ¹*J*_{PPt}=4398 Hz).

^{tBu}**Pt**-PCy₃. Ligand ^tBu₄(SH)₂ (500 mg, 0.96 mmol) and benzyl potassium (251 mg, 1.93 mmol) were suspended in 25 mL toluene at r.t., the reaction mixture was stirred until benzyl potassium was fully

consumed (30 min), and final solvent removal under vacuum afforded a pale yellow solid. Trans-py₂PtCl₂ (409 mg, 0.96 mmol) and PCy₃ (270 mg, 0.96 mmol) were stirred in 16 mL 1,2-C₆H₄F₂ until a white solid formed (2 h) after which ligand potassium diluted in 20 mL of 1,2-C₆H₄F₂ was added, affording a reddish-orange solution. The reaction mixture was degassed by three freezepump-thaw cycles and stirred at 65 °C for 24 h during which the solution gradually turned dark green. The solvent was removed under vacuum, the residue dissolved in 1,2-C₆H₄F₂, the green solution centrifuged to aid the filtration of KCl by that was washed three times with 3 mL of 1,2-C₆H₄F₂. The solution was concentrated until crystals deposited and stored at 8 °C to afford crystalline material suitable for XRD analysis, and crystals were separated, washed with pentane, and finally dried under vacuum. Yield: 459 mg (47 %). Unit cell parameters: a = 9.8047(5) Å, b = 11.4455(5) Å, c =21.2480(9) Å, $\alpha = 87.825(2)^{\circ}$, $\beta = 85.279(2)^{\circ}$, $\gamma = 81.634(2)^{\circ}$, V = 2350.25 Å³, Z = 2, P-1, CCDC deposition number 1960796. Elemental analysis calcd for C₅₃H₈₀PPtS₂: C, 63.19; H, 8.00; S, 6.36. Found: C, 62.17; H, 7.57; S, 6.49. UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)$ =289 (29.7), 320 (30.5), 344 (19.0), 586 (0.2), 647 nm ($0.2 \times 10^3 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1}$). ¹H NMR (600 MHz, C₆D₆, 25°C): δ =7.65 (d, ${}^{4}J_{\text{HH}}$ =2.4 Hz, 2H; H5, H16), 7.47 (d, $J_{\text{H,H}}$ =1.4 Hz, 4H; H8, H9, H10, H11), 7.28 (d, ${}^{4}J_{\text{HH}}$ =2.4 Hz, 2H; H3, H18), 3.00 (m, 3H; PCy₃), 1.95 (s, 18H; H29-H34), 1.91 (m, 6H; PCy₃), 1.56 (m, 15H; PCy₃), 1.36 (s, 18H; H23-H28), 1.19 (m, 6H; PCy₃), 1.03 ppm (m, 3H; PCy₃). ¹³C{¹H} NMR (150 MHz, C₆D₆, 25°C): *δ*=147.6 (C6, C15), 144.9 (C4, C17), 141.1 (C7, C10), 140.3 (C2, C13), 136.0 (d, ³*J*_{CP}=3.4 Hz; C1, C14), 124.6 (C5, C16), 122.5 (C3; C18), 116.8 (C8, C9, C11, C12), 38.3 (C21, C22), 34.5 (C19, C20), 32.2 (d, J_{CP}=32.5 Hz; PCy₃), 31.6 (C23-C28), 31.2 (C29-C34), 29.8 (PCy₃), 27.6 (d, $J_{CP}=11.4$ Hz; PCy₃), 26.8 ppm (PCy₃). ³¹P NMR (242 MHz, C₆D₆, 25°C): δ =37.01 ppm (d, ¹³⁵Pt $^{1}J_{PPt}$ =4638 Hz). NMR (129 MHz, C_6D_6 , 25°C): $\delta = -4638 \text{ ppm}$ (d, ${}^{1}J_{PPt} = 4638 \text{ Hz}$).

^{tBu}**Pt**-PPh₃. Synthesis protocol as for ^{tBu}**Pt**-PCy₃ using PPh₃ (253 mg, 0.96 mmol). Crystallisation from toluene afforded a greenish brown crystalline material. Yield: 333 mg (32 %) ^{tBu}**Pt**-PPh₃×C₇H₈. Crystals suitable for XRD analysis were obtained by diffusion of pentane into a toluene solution at r.t. Unit cell parameters: a = 11.4924(3) Å, b = 13.2351(4) Å, c = 15.9600(5) Å, $\alpha = 11.4924(3)^{\circ}$, $\beta = 94.527(2)^{\circ}$, $\gamma = 99.208(2)^{\circ}$, V = 2281.76 Å³, Z = 2, P-1, , CCDC deposition number 1960801. Elemental composition calcd for C₅₃H₆₂PPtS₂: C, 64.35; H, 6.32; S, 6.48. Found: C, 64.10; H, 5.95; S, 6.58. UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)=327$ (29.1), 360 (19.3), 424 (1.6), 561 nm (0.3×10³ mol⁻¹dm³cm⁻¹). ¹H NMR (500 MHz, CDCl₃, 25°C): $\delta=7.61-7.57$ (m, 5H; PPh₃), 7.53 (s, 4H; H8, H9, H11, H12), 7.39-7.36 (m, 3H; PPh₃), 7.34 (d, ⁴*J*_{HH}=2.3 Hz, 2H; H5, H16), 7.29-7.25 (m, 8H; PPh₃), 7.22 (d, ⁴*J*_{H,H}=2.3 Hz, 2H; H3, H18), 1.33 (s, 18H; H23-H28), 1.10 ppm (s, 18H; H29-H34). ¹³C{¹H} NMR (125 MHz, CDCl₃, 25°C): $\delta=148.0$ (C6, C15), 145.1 (C4, C17), 140.6 (C7, C10), 140.2 (C2, C13), 135.5 (C1, C14), 135.4 (d, *J*_{CP}=10.8 Hz; PPh₃), 130.8 (PPh₃), 127.8 (d, *J*_{CP}=11.5 Hz; PPh₃), 124.6 (C5, C16), 121.9 (C3, C18), 115.2 (C8, C9, C11, C12), 37.4 (C21, C22), 34.5 (C19, C20), 31.5 (H33-H38), 30.3 ppm (C29-C34). ³¹P NMR (202 MHz, CDCl₃, 25°C): δ =32.70 ppm (d, ¹J_{PPt}=4868 Hz) ¹³⁵Pt NMR (129 MHz, CDCl₃, 25°C): δ =-4674 ppm (d, ¹J_{P,Pt}=4868 Hz).

^{Mes}**Pd**-PCy₃. Ligand Mes₂^tBu₂(SH)₂ (500 mg, 0.78 mmol) and benzyl potassium (203 mg, 1.56 mmol) were suspended in 17.5 g toluene at r.t. The reaction mixture was stirred at r.t. until all benzyl potassium was consumed and a clear yellow solution was formed. To this solution trans-py2PdCl2 suspended in 8.75 g toluene was added. The solution turns reddish-orange. Then PCy_3 in 8.75 g toluene was added and the solutions becomes brown. After stirring for 16 h at r.t. the reaction mixture was degassed by freeze-pump-thaw technique and then headed up to 60°C for 4 h. The brown solution was centrifuged, filtered of and the remaining KCl was washed three times with 3 mL toluene. The solvent was removed under vacuum and the brown-yellow solid was extracted with toluene. The solution was concentrated until some crystals were formed and pentane was added by slow diffusion at r.t. to obtain crystalline Mes **Pd**-PCy₃×C₇H₈ suitable for XRD analysis. The crystals were washed with pentane and dried under vacuum, losing half equivalent of toluene. Yield: 350 mg (40 %) MesPd-PCy₃×0.5(C₇H₈). Unit cell parameters: a = 10.0757(3) Å, b = 16.5651(4) Å, c = 19.5789(6) Å, $\alpha =$ $108.6390(10)^{\circ}$, $\beta = 97.825(2)^{\circ}$, $\gamma = 105.2480(10)^{\circ}$, V = 2899.46 Å³, Z = 2, P-1, , CCDC deposition number 1960799. Elemental analysis calcd for C133H176P2Pd2S4: C, 73.35; H, 8.15; S, 5.89. Found for two measurements of the same batch of crystalline material: C, 73.65/73.06; H, 7.44/8.00; S, 5.47/5.17. The high deviation could be caused by difficulties desorbing H₂O and SO₂ properly separated from the device column. Therefore spectra ¹H, ¹³C{¹H} and ³¹P spectra of this batch are included in Figure S1 and S2. UV/vis/NIR (CH₂Cl₂, -80°C): $\lambda(\varepsilon)$ =315 (17.0), 396 (33.5), 500 (0.4), 527 (0.3), 686 nm ($0.2 \times 10^3 \text{ mol}^{-1} \text{dm}^3 \text{cm}^{-1}$). ¹H NMR (600 MHz, CD₂Cl₂, 25°C): δ =7.61 (s, 4H; H8, H9, H11, H12), 7.31 (d, ⁴*J*_{HH}=2.3 Hz, 2H; H3, H18), 6.86 (d, ⁴*J*_{HH}=2.3 Hz, 2H; H5, H16), 6.85 (s, 4H; H23, H25, H29, H31), 2.56 (s, 3H; PCy₃), 2.24 (s, 6H; H40, H43), 2.00 (s, 12H; H39, H41, H42, H44), 1.50-1.39 (m, 16H; PCy₃), 1.34 (s, 18H; H33-H38), 1.25-1.16 (m, 6H; PCy₃), 1.07-0.99 (m, 3H; PCy₃), 0.86-0.70 ppm (m, 5H; PCy₃). ¹³C{¹H} NMR (150 MHz, CD₂Cl₂, 25°C): δ =145.9 (C4, C17), 141.3 (C7, C10), 140.7 (C6, C15), 140.6 (C21, C27), 138.8 (C1, C14), 138.4 (C2, C13), 136.4 (C24, C30), 136.1 (C22, C26, C28, C32), 128.1 (C23, C25, C29, C31), 127.3 (C5, C16), 122.4 (C3, C18), 118.1 (C8, C9, C11, C12), 34.5 (C19, C20), 31.6 (C33-C38), 30.7 (d, J_{PC}=24.2 Hz; PCy₃), 30.4 (PCy₃), 27.1 (d, *J*_{PC}=11.1Hz; PCy₃), 26.8 (PCy₃), 21.2 (C40, C43), 20.7 ppm (C39, C41, C42, C44). ³¹P NMR (CD₂Cl₂, 243 MHz): *δ*=52.6 ppm.

^{Mes}**Pd**-PPh₃. Method 1: Mes₂'Bu₂(SH)₂ (300 mg, 0.47 mmol), *trans*-py₂PdCl₂ (156 mg, 0.47 mmol) and PPh₃ (122 mg, 0.47 mmol) were suspended in 23 mL toluene and Et₃N (0.15 mL, 0.98 mmol) was added. The yellow suspension turns red-orange after the addition of Et₃N. The reaction mixture was degassed by three freeze-pump-thaw cycles and heated to 55 °C for 2 h. The reaction mixture was then filtered off, and the residue washed three times with toluene. The brown solution was concentrated in vacuum and diffusion of pentane afforded brown needles, which were washed with pentane and dried

under vacuum. Yield: 286 mg (55 %) MesPd-PPh₃×C₇H₈.

Method 2: $Mes_2^{t}Bu_2(SH)_2$ (300 mg, 0.47 mmol) and benzyl potassium (122 mg, 0.94 mmol) were suspended in 23 mL toluene. The reaction mixture was stirred at r.t. until all benzyl potassium was consumed (30 min). Then *trans*-py₂PdCl₂ and PPh₃ were added and the reaction turns reddish. The mixture was degassed by freeze-pump-thaw-technique and heated for 10 h at 55 °C. The brown solution was centrifuged, filtered of and the residue was washed three times with toluene. The solution was concentrated in vacuum and by diffusion of pentane brown needles of the product with one equivalent toluene were obtained. The crystals were washed with pentane and dried under vacuum. Yield: 152 mg (30 %) ^{Mes}Pd-PPh₃×C₇H₈.

Crystals suitable for XRD analysis were obtained by diffusion of pentane into a toluene solution at rt. Unit cell parameters: a = 9.4361(7) Å, b = 34.785(3) Å, c = 17.2103(12) Å, $\alpha = 90^{\circ}$, $\beta = 91.871(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 5646.01 Å³, Z = 4, P21/n, CCDC deposition number 1960803. Elemental analysis calcd for C₇₀H₇₄PPdS₂: C, 75.28; H, 6.68; S, 5.74. Found: C, 74.73; H, 6.22, S, 6.06. UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)=409$ (27.5), 528 (0.6), 681 nm (0.3×10³ mol⁻¹dm³cm⁻¹). ¹H NMR (400 MHz, CD₂Cl₂, 25°C): $\delta=7.67$ (s, 4H; H8, H9, H11, H12), 7.37 (d, ⁴*J*_{HH}=2.3 Hz, 2H; H3, H18), 7.26-7.19 (m, 9H; PPh₃), 7.12-7.07 (m, 6H; PPh₃), 6.78 (d, ⁴*J*_{HH}=2.3 Hz, 2H; H5, H16), 6.61 (s, 4H; H23, H25, H29, H31), 2.24 (s, 6H; H40, H43), 1.66 (s, 12H; H39, H41, H42, H44), 1.32 (s, 4H; H33-H38). ¹³C {¹H} NMR (101 MHz, CD₂Cl₂, 25°C): $\delta=146.1$ (C4, C17), 141.1 (C7, C10), 140.8 (C6, C15), 139,6 (d, ³*J*_{CP}=9.9 Hz; C1, C14), 138.5 (C2, C13), 136.0 C22, C26, C28, C32), 135.3 (C24, C30), 135.1 (d, *J*_{CP}=10.9 Hz; PPh₃), 130.4 (PPh₃), 127.7 (d, *J*_{CP}=11.2 Hz; PPh₃), 127.7 (C23, C25, C29, C31), 127.2 (C5, C16), 122.3 (C3, C18), 117.9 (C8, C9, C11, C12), 34.5 (C19, C20), 31.5 (C33-C38), 21.1 (C40, C43), 20.3 ppm (C39, C41, C42, C44). ³¹P NMR (162 MHz, CD₂Cl₂, 25°C): $\delta=49.3$ ppm. Diffusion coefficient $D = 6.8 \times 10^{-10}$ m²/s (293 K, CD₂Cl₂).

[^{Mes}**Pt-**PCy₃]N(SO₂CF₃)₂. To a solution of ^{Mes}**Pt-**PCy₃×1,2-C₆H₄F₂ (92 mg, 0.074 mmol) in 4 mL of CH₂Cl₂ was added [(η^5 -MeC(O)C₃H₄)₂Fe]N(SO₂CF₃)₂ (41 mg, 0.074 mmol) in 2 mL of CH₂Cl₂ at r.t. The dark purple solution was stirred for 2 min and was then cannula transferred into 100 mL of vigorously stirred pentane. A dark purple solid precipitated, and the reaction mixture was stored at - 28°C overnight. An orange mother liquor was removed, and the purple solid recrystallized from CH₂Cl₂ layered with pentane (1:10) at -28°C. The crystals thus obtained were washed with pentane three times and dried under vacuum. Yield: 77 mg (74 %). Crystals suitable for XRD analysis were obtained from diffusion of pentane into a 1,2-C₆H₄F₂ solution at -38°C. Unit cell parameters: *a* = 27.4740(10) Å, *b* = 29.3018(10) Å, *c* = 10.8540(4) Å, $\alpha = \beta = \gamma = 90^\circ$, V = 8737.88 Å³, Z = 8, Pnma, CCDC deposition number 1960802. Elemental analysis calcd for C₆₅H₈₄F₆NO₄PPtS₄: C, 55.30; H, 6.00; N, 0.99; S, 9.08. Found: C, 54.93; H, 5.93; N, 0.99; S, 9.23. $\mu_{eff} = 2.1$ (278–308 K, CD₂Cl₂ containing 1,1,2,2-C₂H₂Cl₄). UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)=348$ (15.9), 368 (17.4), 485 (2.7), 535 (2.6), 631 (1.1), 686 (0.4), 809 (0.9), 949 (0.3), 1526 nm (18.3×10³ mol⁻¹dm³cm⁻¹).

[^{Mes}**Pt**-PCy₃]BAr^F₄. ^{Mes}**Pt**-PCy₃×1,2-C₆H₄F₂ (50 mg, 0.04 mmol) was dissolved in 1,5 mL of CH₂Cl₂ and cooled to -78° C in an aceton/dry ice bath, and combined with a solution of [(4-BrC₆H₄)₃N]BAr^F₄ (54 mg, 0.04 mmol) in 0.5 mL of CH₂Cl₂ that was transferred by cannula. The resulting dark purple solution was layered with pentane (1:10) and stored at -28°C, affording dark purple crystals that were washed with pentane three times and dried under vacuum. Yield: 49 mg (61 %). Crystals suitable for XRD analysis were obtained by diffusion of pentane into a 1,1,2,2-C₂H₂Cl₄ solution at -38 °C. Unit cell parameters: *a* = 15.1784(6) Å, *b* = 16.5068(6) Å, *c* = 21.9412(8) Å, α = 84.293(2)°, β = 72.914(2)°, γ = 71.728(2)°, V = 4989.56 Å³, Z = 4, P-1, CCDC deposition number 1960800. Elemental analysis calcd for C₉₅H₉₆BF₂₄PPtS₂: C; 57.20; H, 4.85; S, 3.21. Found: C, 57.04; H, 4.93; S, 3.18. UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)$ =349 (19.4), 367 (20.9), 486 (2.9), 533 (2.8), 636 (1.0), 812 (0.5), 1530 nm (21.7×10³ mol⁻¹dm³cm⁻¹). UV/vis/NIR (propylene carbonate, 20°C): $\lambda(\varepsilon)$ =269 (40.8), 352 (15.1), 492 (1.7), 536 (1.8), 678 (0.7), 830 (0.8), 965 (0.7), 1511 nm (15.3×10³ mol⁻¹dm³cm⁻¹).

[^{tBu}**Pt**-PCy₃]N(SO₂CF₃)₂. Same procedure as for [^{Mes}**Pt**-PCy₃]N(SO₂CF₃)₂ starting from ^{tBu}**Pt**-PCy₃ (100 mg, 0.1 mmol) afforded a dark purple crystalline solid. Yield: 96 mg (75 %). Elemental analysis calcd for C₅₅H₈₀F₆NO₄PPtS₄: C, 51.31; H, 6.26; N, 1.09; S, 9.96. Found: C, 50.48; H, 6.18; N, 1.16; S, 10.39; $\mu_{eff} = 2.2$ (278–308 K, CD₂Cl₂ containing 1,1,2,2-C₂H₂Cl₄). UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)=256$ (39.7), 278 (38.0), 347 (19.1), 377 (13.2), 502 (4.0), 554 (3.8), 657 (1.8), 746 (1.1), 926 (0.9), 1682 nm (15.4×10³ mol⁻¹dm³cm⁻¹).

[^{tBu}**Pt**-PPh₃]N(SO₂CF₃)₂. Same procedure as for [^{Mes}**Pt**-PCy₃]N(SO₂CF₃)₂ starting from t^{Bu}**Pt**-PPh₃×C₇H₈ (100 mg, 0.09 mmol) afforded a dark purple crystalline solid. Yield: 41 mg (35 %). Elemental analysis calcd for C₅₅H₆₂F₆NO₄PPtS₄: C; 52.04; H, 4.92; N, 1.10; S, 10.10. Found: Found: C, 51.61; H, 4.85; N, 1.22; S, 10.26. $\mu_{eff} = 1.9$ (223–273 K, CD₂Cl₂ containing 1,1,2,2-C₂H₂Cl₄). UV/vis/NIR (CH₂Cl₂, -50°C): $\lambda(\varepsilon)=374$ (6.3), 506 (3.1), 536 (3.0), 617 (1.2), 746 (0.3), 959 (0.7), 1539 nm (17.1×10³ mol⁻¹dm³cm⁻¹).

[^{tBu}**Pt**-PPh₃]BAr^F₄. Same procedure as for [^{Mes}**Pt**-PCy₃]BAr^F₄ starting from ^{tBu}**Pt**-PPh₃×C₇H₈ (50 mg, 0.046 mmol) afforded brown crystalline material. Yield: 41 mg (48 %). Dark brown single crystals suitable for XRD analysis separated at -38 °C from a CH₂Cl₂ solution of [^{tBu}**Pt**-PCy₃]BAr^F₄ layered with pentane. Unit cell parameters: a = 14.4458(3) Å, b = 18.4681(4) Å, c = 19.6025(4) Å, $\alpha = 107.0010(10)^{\circ}$, $\beta = 108.6950(10)^{\circ}$, $\gamma = 100.0160(10)^{\circ}$, P-1, CCDC deposition number 1960798. Elemental analysis calcd for C₈₅H₇₄BF₂₄PPtS₂: C, 55.11; H, 4.03; S, 3.46. Found: C, 54.74; H, 3.91; S, 3.86.

 $[^{\text{Mes}}\mathbf{Pd}$ -PCy₃]BAr^F₄. Procedure as for $[^{\text{Mes}}\mathbf{Pt}$ -PCy₃]BAr^F₄ starting from $^{\text{Mes}}\mathbf{Pd}$ -PCy₃×0.5(C₇H₈) (50 mg, 0.046 mmol) afforded a dark red crystalline material. Yield: 59 mg (68%). Dark reddish brown crystals suitable for XRD analysis separated at -28 °C from a CH₂Cl₂ solution layered with pentane. Unit cell parameters: a = 15.9777(3) Å, b = 17.5645(3) Å, c = 19.4418(3) Å, $\alpha = 111.6280(10)^{\circ}$, $\beta =$

102.1630(10)°, $\gamma = 92.6780(10)°$, V = 4525.78 Å³, Z = 2, P-1, CCDC deposition number 1960804. Elemental analysis calcd for C₉₅H₉₆BF₂₄PPdS₂: 59.86; H, 5.08; S, 3.36. Found: C, 59.24; H, 5.13; S, 3.30. UV/vis/NIR (CH₂Cl₂, 20°C): $\lambda(\varepsilon)=277$ (51.1), 302 (27.8), 412 (14.5), 442 (14.4), 544 (5.6), 852 (1.7), 2210 nm (13.7×10³ mol⁻¹dm³cm⁻¹). UV/vis/NIR (propylene carbonate, -40°C): $\lambda(\varepsilon)=402$ (12.8), 432 (10.3), 538 (2.9), 862 (0.7), 2210 nm (6.2×10³ mol⁻¹dm³cm⁻¹).

4 Additional Solid-State Structure Data

	^{Mes} Ni-PCy ₃ ^{a)}	Mes Pd- PCy ₃	Mes Pt- PCy ₃	tBu Pt- PCy ₃	^{tBu} Pt- PPh ₃	Mes Pd- PPh ₃
M-P	2.353(2)	2.3119(6)	2.2955(4)	2.2685(6)	2.2356(8)	2.263(1)
M-S1	2.222(2)	2.3729(5)	2.3719(3)	2.3827(6)	2.3433(7)	2.348(4)
S1-Ar	1.776(4)	1.778(2)	1.773(1)	1.791(2)	1.790(3)	1.782(3)
M-S2	2.259(2)	2.3725(6)	2.3719(3)	2.3604(6)	2.3809(6)	2.361(1)
S2-Ar	1.780(4)	1.769(2)	1.773(1)	1.792(2)	1.785(3)	1.774(3)
M-Ar ^{b)}	2.179	2.305	2.273	2.271	2.254	2.313
P-M-Ar ^{b)}	171.86	173.47	177.89	167.51	171.26	161.33
M-S1-CC	4.1(4)	2.3(2)	3.5	11.3(2)	19.8(3)	12.6(3)
M-S2-CC	13.3(4)	3.8(2)	3.5	15.1(2)	20.5(2)	9.5(3)

Table S1 Selected bond lengths [Å] and angles [°] of neutral complexes.

a) Data included for the sake of better comparability and taken from ref. ¹³. b) Data determined using centroid of η^2 -coordinate moiety of 1,4-disubstituted arene.

	$[^{Mes}\mathbf{Pd}-\mathbf{PCy}_3]$	[^{Mes} Pt- PCy ₃]	[^{Mes} Pt- PCy ₃]	[^{Mes} Pt- PPh ₃]	[^{tBu} Pt- PPh ₃]
	BAr ^F 4	$\mathrm{BAr}^{\mathrm{F}_{4}}$	$N(SO_2CF_3)_2{}^{a)}$	$N(SO_2CF_3)_2{}^{b)}$	BAr ^F ₄
M-P	2.3155(7)	2.307(1)	2.320	2.2694(7)	2.2441(7)
M-S1	2.3238(7)	2.306(1)	2.296	2.3012(9)	2.3391(6)
S1-Ar	1.772(3)	1.761(4)	1.755(5)	1.760(2)	1.786(3)
M-S2	2.3276(7)	2.314(1)	2.296	2.3149(9)	2.3410(6)
S2-Ar	1.743(3)	1.758(6)	1.755(5)	1.760(2)	1.796(3)
M-Ar	2.366	2.356	2.313	2.270	2.296
P-M-Ar	164.70	170.33	172.26	174.62	169.81
M-S1-CC	8.8(3)	8.5(5)	4.2	18.8(2)	20.3(2)
M-S2-CC	4.9(3)	4.6(5)	4.2	3.2(2)	17.4(2)

 Table S2 Selected bond lengths [Å] and angles [°] of radical cation complexes.

a) The Pt atom locates at an inversion centre so metrical data are likely biased by symmetry of the crystal lattice. b) Data included for comparison and taken from ref. 16.

Fig. S2 ¹H NMR (600 MHz, CD₂Cl₂, 26°C) and ³¹P{¹H} NMR data (243 MHz CD₂Cl₂, 26°C; inset): Mes Pd-PCy₃×0.5(C₇H₈).

Fig. S3 ¹³C{¹H} NMR (150 MHz, CD₂Cl₂, 26°C):^{Mes}Pd-PCy₃×0.5(C₇H₈).

6 Additional Information on UV/Vis/NIR Spectroscopy Data

For *in situ* generation of [^{Mes}**M**-L]⁺ stock solutions of the neutral compound and the oxidizing agent in CH₂Cl₂ at r.t. were prepared. A four-sided transparent cell with a screw cap and septum was filled with 2.8 mL CH₂Cl₂, and background spectra were recorded at $-90 \le T \le 20$ °C at 10 °C steps. The neutral compound is then transferred by syringe to the cuvette at $T \le -80$ °C and a spectrum is recorded. Aliquots of 0.25 equiv., in the case of [^{Mes}**Ni**-PCy₃]⁺ one equiv., of oxidizing agent are added, and spectra were recorded after each addition. The obtained spectra were corrected by subtraction of the respective background of neat CH₂Cl₂.

Due to insolubility at high concentrations the stock solution of $[^{\text{Mes}}\mathbf{Pd}-\mathbf{PCy}_3]\mathbf{BAr}^{F_4}$ for measurements in PC were prepared in CH₂Cl₂. 2.8 mL of PC are added to a four-sided transparent cell with a screw cap and septum, and background spectra were recorded at $-40 \le T \le 20$ °C. 15 µL of the stock solution is added four times and a spectrum is recorded after each addition.

Table S3 NIR data of $[^{R}M-L]X$ (X = $(F_{3}CSO_{2})_{2}N^{-}$ (= NTf₂) and Ar^F₄B⁻) in CH₂Cl₂ solution.

	λ/	v/	$\Delta v_{1/2}$	<i>ε</i> / 10 ⁴	T /
	nm	cm ⁻¹	cm ⁻¹	L mol ⁻¹ cm ⁻¹	K
$[^{Mes}Ni-PCy_3]NTf_2$	2149	4653	1455	0.53	183
[^{Mes} Ni-PCy ₃]BAr ^F ₄	2157	4636	1454	0.43	183
$[{}^{Mes}\textbf{Pd}\text{-}PCy_3]NTf_2$	2216	4512 (4502)	1108 (1241)	1.5	193 (293)
$[{}^{Mes}\textbf{Pd}\text{-}PCy_3]BAr^{F_4}$	2210	4531 (4524)	1093 (1311)	1.5	183 (293)
$[^{Mes}\textbf{Pd}\text{-}PPh_3]NTf_2$	2179	4589 (4596)	1100 (1260)	1.4	183 (293)
$[^{Mes}$ Pt- PCy ₃]NTf ₂	1526	6531 (6561)	1410 (1588)	1.8	193 (293)
$[^{Mes}$ Pt- PCy ₃ $]$ BAr ^F ₄	1530	6540 (6535)	1394 (1672)	2.2	183 (293)
$[^{tBu}\mathbf{Pt}$ -PCy ₃]NTf ₂	1682	6090 (5945)	2056 (1944)	1.5	183 (293)
$[^{tBu}$ Pt- PPh ₃]NTf ₂	1539	6497 (6406)	1544 (1698)	1.7	223 (293)

^{Mes}Ni-PCy₃. UV/vis/NIR (CH₂Cl₂, -90°C): $\lambda(\varepsilon)$ =331 (20.4), 448 (3.2), 558 (6.9), 658 (3.0), 1058 nm (1.3×10³ mol⁻¹dm³cm⁻¹).

[^{Mes}Ni-PCy₃]BAr^F₄. UV/vis/NIR (CH₂Cl₂, -90°C): $\lambda(\varepsilon)$ =436 (5.1), 564 (6.3), 657 (3.0), 1089 (3.1), 1297 (2.0), 2157 (3.7×10³ mol⁻¹dm³cm⁻¹).

[^{Mes}Ni-PCy₃]N(SO₂CF₃)₂. UV/vis/NIR (CH₂Cl₂, -90°C): $\lambda(\varepsilon)$ =332 (20.2), 434 (6.8), 500 (6.1), 568 (6.7), 685 (3.3), 1098 (4.2), 1297 (2.9), 2149 (5.4×10³ mol⁻¹dm³cm⁻¹).

 $[^{Mes}Pd-PCy_3]N(SO_2CF_3)_2. UV/vis/NIR (CH_2Cl_2, -80^{\circ}C): \lambda(\varepsilon)=436 (27.0), 538 (7.2), 797 (1.2), 863 (1.8), 1131 (0.5), 2216 (20 \times 10^3 \text{ mol}^{-1}\text{dm}^3\text{cm}^{-1}).$

 $[^{Mes}$ **Pd**-PPh₃]N(SO₂CF₃)₂. UV/vis/NIR (CH₂Cl₂, -90°C): $\lambda(\varepsilon)$ =407 (21.6), 534 (6.1), 832 (1.2), 1174 (0.8), 2179 (14×10³ mol⁻¹dm³cm⁻¹). Diffusion coefficient *D* of Dimer = 4.8×10⁻¹⁰ m²/ s (293 K, CD₂Cl₂).

Fig. S4 UV/vis/NIR spectra (CH₂Cl₂, -90°C): 0.144 mM [Mes Ni-PCy₃]N(SO₂CF₃)₂ (red) and 0.151 mM Mes Ni-PCy₃ (black).

Fig. S5 UV/vis/NIR spectra (CH₂Cl₂, -90°C): 0.087 mM [^{Mes}Ni-PCy₃]BAr^F₄, evolution of spectra monitored over 2 h.

Fig. S6 UV/vis/NIR spectra (CH₂Cl₂, -90°C): 0.144 mM [^{Mes}Ni-PCy₃]N(SO₂CF₃)₂, evolution of spectra monitored over 40 min.

Fig. S7 UV/vis/NIR spectra (CH₂Cl₂, -80°C): 0.103 mM [Mes Pd-PCy₃]N(SO₂CF₃)₂ (red) and 0.111 mM Mes Pd-PCy₃ (black).

Fig. S8 UV/vis/NIR spectra (CH₂Cl₂, -90°C): 0.055 mM [Mes Pd-PPh₃]N(SO₂CF₃)₂ (red) and 0.054 mM Mes Pd-PPh₃ (black).

Fig. S9 UV/vis/NIR spectra (CH₂Cl₂, 20°C): 0.057 mM [Mes Pt-PCy₃]N(SO₂CF₃)₂ (red) and 0.052 mM Mes Pt-PCy₃ (black).

Fig. S10 VT UV/vis/NIR spectra (CH₂Cl₂, 20°C): 0.037 mM [^{tBu}**Pt**-PCy₃]N(SO₂CF₃)₂ and 0.063 mM ^{tBu}**Pt**-PCy₃ (black).

Fig. S11 UV/vis/NIR spectra (CH₂Cl₂, -50°C): 0.064 mM [tBu Pt-PPh₃]N(SO₂CF₃)₂ and 0.065 mM tBu Pt-PPh₃ (black).

7 Additional X-Band cw-EPR Data

For the general *in situ* preparation, 4 mM stock solutions of the neutral complexes in toluene and of the oxidizing agent in CH_2Cl_2 were prepared at r.t. For delicate samples, 0.25 mL of the neutral compound were transferred by syringe into an NMR tube sealed with a septum and cooled in an acetone/dry ice bath at -80 °C. To this solution, 0.25 mL of the stock solution of the oxidizing agent were added slowly. The reactant solutions were mixed agitating the tube carefully, and finally frozen in liquid N₂.

Fig. S12 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 110 K): [^{Mes}Ni-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.296928 GHz, microwave power = 0.7962 mW, modulation amplitude = 0.2 mT, Simulated parameters: $g_x = 2.131$, $g_y = 2.058$, $g_z = 2.038$; full line width at half maximum (Gaussian; Lorentzian) lw = [0.929; 0.437] mT, gStrain = [0.0155; 0; 0.00410].

Fig. S13 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 110 K): Sample of [^{Mes}Ni-PCy₃]BAr^F₄ after keeping at r.t. for <5 min. (initial spectrum identical with Fig. S12), microwave frequency = 9.256458 GHz, microwave power = 0.5024 mW, modulation amplitude = 0.2 mT, Simulated parameters: $g_{x,y}$ = 2.138, g_z = 2.092; full line width at half maximum (Gaussian; Lorentzian) lw = [0.127; 0.946] mT, gStrain = [0.00696; 0].

Fig. S14 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{Mes}**Pd**-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.293992 GHz, microwave power = 0.0317 mW, modulation amplitude = 0.0702 mT, Simulated parameters: g_{iso} = 2.039, A_{iso} (¹⁰⁵Pd) = 17 MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.293; 0.634] mT.

Fig. S15 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 110 K): [^{Mes}Pd-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.305645 GHz, microwave power = 0.1262 mW, modulation amplitude = 0.0701 mT, Simulated parameters: g_x = 2.062, g_y = 2.042, g_z = 2.011, A_x (¹⁰⁵Pd) = 22, A_y (¹⁰⁵Pd) = 7, A_z (¹⁰⁵Pd) = 10 MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.526; 0.172] mT, gStrain = [0.00197; 0.0006; 0].

Fig. S16 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{Mes}**Pd**-PPh₃]N(SO₂CF₃)₂, microwave frequency = 9.7548510 GHz, microwave power = 2 mW, modulation amplitude = 0.4767 mT, Simulated parameters: g_{iso} = 2.036, A_{iso} (¹⁰⁵Pd) = 16 MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.486; 0.535] mT.

Fig. S17 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 77 K): [^{Mes}Pd-PPh₃]N(SO₂CF₃)₂, microwave frequency = 9.4982505 GHz, microwave power = 2 mW, modulation amplitude = 0.26804 mT, Simulated parameters: $g_x = 2.058$, $g_y = 2.038$, $g_z = 2.010$, $A_x(^{105}Pd) = 31$, $A_y(^{105}Pd) = 13$, $A_z(^{105}Pd) = 12$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.0683; 0.0857] mT, gStrain = [0.00625; 0.00711; 0.00385].

Fig. S18 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{Mes}**Pt**-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.297227 GHz, microwave power = 2 mW, modulation amplitude = 0.3 mT, Simulated parameters: $g_{iso} = 2.094$, $A_{iso}(^{195}\text{Pt}) = 192$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.400; 4.501] mT.

Fig. S19 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 110 K): [^{Mes}**Pt**-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.306359 GHz, microwave power = 2 mW, modulation amplitude = 0.3 mT, Simulated parameters: $g_x = 2.177$, $g_y = 2.091$, $g_z = 2.006$, $A_x(^{195}\text{Pt}) = 191$, $A_y(^{195}\text{Pt}) = 186$, $A_z(^{195}\text{Pt}) = 259$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.788; 0.226] mT, gStrain = [0.0142; 0.00679; 0].

Fig. S20 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{tBu}**Pt**-PPh₃]BAr^F₄, microwave frequency = 9.294807 GHz, microwave power = 0.5024 mW, modulation amplitude = 0.2 mT, Simulated parameters: $g_{iso} = 2.085$, $A_{iso}(^{195}\text{Pt}) = 181$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.520; 3.901] mT.

Fig. S21 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 110 K): [^{tBu}**Pt**-PPh₃]BAr^F₄, microwave frequency = 9.304133 GHz, microwave power = 0.5024 mW, modulation amplitude = 0.2 mT, Simulated parameters: $g_x = 2.162$, $g_y = 2.082$, $g_z = 2.007$, $A_x(^{195}\text{Pt}) = 178$, $A_y(^{195}\text{Pt}) = 177$, $A_z(^{195}\text{Pt}) = 238$ MHz; full line width at half maximum (Gaussian; Lorentzian) $l_W = [0.766; 0.325]$ mT, gStrain = [0.0194; 0.0129; 0.00122].

Fig. S22 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{tBu}**Pt**-PPh₃]N(SO₂CF₃)₂, microwave frequency = 9.295042 GHz, microwave power = 2 mW, modulation amplitude = 0.3 mT, Simulated parameters: $g_{iso} = 2.084$, $A_{iso}(^{195}\text{Pt}) = 195$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.689; 4.221] mT.

Fig. S23 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 123 K): [^{tBu}**Pt**-PPh₃]N(SO₂CF₃)₂, microwave frequency = 9.304748 GHz, microwave power = 2 mW, modulation amplitude = 0.3 mT, Simulated parameters: $g_x = 2.158$, $g_y = 2.078$, $g_z = 2.004$; $A_x(^{195}\text{Pt}) = 185$, $A_y(^{195}\text{Pt}) = 175$, $A_z(^{195}\text{Pt}) = 237$ MHz; full line width at half maximum (Gaussian; Lorentzian) lw = [0.676; 0.455] mT, gStrain = [0.0212; 0.0141; 0.000747].

Fig. S24 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 293 K): [^{tBu}**Pt**-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.293009 GHz, microwave power = 0.5 mW, modulation amplitude = 0.3 mT, Simulated parameters: $g_{iso} = 2.079$; $A_{iso}(^{195}\text{Pt}) = 214$ MHz, full line width at half maximum (Gaussian; Lorentzian) lw = [1.415 4.778] mT.

Fig. S25 X-Band cw-EPR spectra (1:1 C₇H₈/CH₂Cl₂, 123 K): [^{IBu}Pt-PCy₃]N(SO₂CF₃)₂, microwave frequency = 9.306693 GHz, microwave power = 07962 mW, modulation amplitude = 0.3 mT, Simulated parameters for System 1 (Sys1): $g_x = 2.155$, $g_y = 2.081$, $g_z = 2.009$; $A_x(^{195}Pt) = 280$, $A_y(^{195}Pt) = 189$, $A_z(^{195}Pt) = 237$ MHz; full line width at half maximum (Gaussian; Lorentzian) hw = [1.2909; 0] mT, gStrain = [0.00867; 0.00121; 0.00645], weight = 0.794. Simulated parameters for System 2 (Sys2): $g_x = 2.169$, $g_y = 2.089$, $g_z = 1.995$; $A_x(^{195}Pt) = 168$, $A_y(^{195}Pt) = 173$, $A_z(^{195}Pt) = 261$ MHz; full line width at half maximum (Gaussian; Lorentzian) hw = [1.382; 0.396] mT, gStrain = [0.0328; 0.0141; 0.00748], weight = 1.432.

8 Additional Electrochemical Data

Table S4 CV data measured in CH₂Cl₂ at 17 °C in 0.1 M nBu₄NPF₆. E/mV vs. Fc/[Fc]⁺, Fc = ferrocene; $E(100 \text{ mVs}^{-1})$ for electrochemically quasi- (qr) or irreversible (ir) processes.

	$E^{0}{}_{1}$	$E^{0}{}_{2}$	ΔE^{0} 1-2
^{Mes} Ni-PCy ₃	134 (ir)	941 (ir)	807
Mes Pd- PCy ₃	172	854	682
$^{Mes}\mathbf{Pd} ext{-}PPh_3$	192	728 (ir)	536
^{Mes} Pt- PCy ₃	32	806	774
Mes Pt- PPh ₃ ^[a]	60	727	667
^{tBu} Pt- PCy ₃	20	668	648
^{tBu} Pt- PPh ₃	72	679 (qr)	607

[a] Data included for comparison from ref. 16.

Fig. S26 CV *i-E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.135mM ^{Mes}**Pd**-PCy₃ (black, potential sweep direction reversed at 0.433 V).

Fig. S27 CV *i-E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.093 mM ^{Mes}Pd-PPh₃ (red); 0.086 mM ^{Mes}Pd-PPh₃ (black, potential sweep direction reversed at 0.44 V).

Fig. S28 CV *i-E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.06 mM ^{Mes}Ni-PCy₃.

Fig. S29 CV *i*-*E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.182 mM [^{Mes}Pt-PCy₃]N(SO₂CF₃)₂ (black, potential sweep finished at 0.39 V).

Fig. S30 CV *i-E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.213 mM [^{tBu}**Pt-P**Cy₃]N(SO₂CF₃)₂ (black, potential sweep finished at 0.39 V).

Fig. S31 CV *i-E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.135 mM ^{tBu}**Pt-**PPh₃ (black, potential sweep direction reversed at 0.37 V).

Fig. S32 CV *i*-*E* curves (0.1 M nBu₄NPF₆/CH₂Cl₂, 100 mV s⁻¹, 17 °C): 0.135 mM ^{tBu}Pt-PPh₃ (red), and 0.189 mM [^{tBu}Pt-PPh₃]N(SO₂CF₃)₂ (black, solid and dashed).

9 Additional Computational Data

9.1 General Information

All calculations were performed using the ADF2017.111 release^{31, 32} or ORCA version 4.0.1³³.

Structures optimization and EPR calculations were done in ADF, electronic excitations were computed using ORCA. Structures were optimized using the PBE0-1/3-D3(BJ) functional (using the PBE0-D3(BJ) parameter for the dispersion correction and 33.333 % exact exchange) and PBE0-D3(BJ) for the Nickel compound, ZORA and the ZORA-TZP basis set. All property calculations (EPR parameters, TD-DFT) were performed on the PBE0-1/3 level of theory. All ADF calculations used COSMO with the parameters for CH_2Cl_2 ($\epsilon = 8.93$, Rsolv = 2.94), a "good" numerical quality. The convergence criteria were set to 5e-7 for the commutator of Fock and density matrix in the SCF and to 1e-5 hartree for energy change and 1e-4 hartree/bohr for gradient change in the structure optimization. EPR parameters were calculated using the collinear ZORA(SO) approach, the ZORA-TZ2P basis set and a Gaussian nuclear model.

Symmetrised non-equilibrium structures to approximately model the transition states for thermal electron transfer from one to the other thiophenolate ligand side were obtained at the same level of theory by symmetrizing the molecular structure and enforcing C_s symmetry throughout the optimization.

For the TD-DFT calculations, a CPCM model with the COSMO $f(\varepsilon)$ and the parameters used in ADF and ZORA were used. The calculations employed the ZORA-def2-TZVPP basis sets from the internal ORCA library (old-ZORA-TZVPP for Pd and SARC-ZORA-TZVPP for Pt), the RIJCOSX approximation with the "AutoAux" function for the fitting basis sets and the "VeryTightSCF" convergence criteria, as well as a Grid5 grid and a GridX6 COSX-grid. In the TD-DFT part, 50 roots were converged. The oscillator strengths given in the main text were obtained via the transition electric dipole moment route.

Due to convergence problems, the calculation on the symmetric structures were performed in C_1 symmetry as well. Inspection of the Mulliken spin populations confirmed a symmetric electronic structure. Comparison with NPA charges established that the wavefunctions in both programs were comparable.

9.2 Computational Results

		PBE0-1/3	
	[^{Mes} Ni-PCy ₃] ⁺	$[^{\text{Mes}}\textbf{Pd}\text{-}\text{PCy}_3]^+$	$[^{\text{Mes}}\mathbf{Pt}\text{-}\mathbf{PCy}_3]^+$
$g_{ m iso}{}^{ m a)}$	2.054	2.038	2.099
$\Delta g^{\mathrm{a})}$	0.263	0.062	0.174
$A_{\rm iso}/{ m MHz}$	3	15	183
$\lambda^{\rm NIR}/\rm nm$	1790	1800	1260
ν^{NIR}/cm^{-1}	5570	5540	7910
$f_{ m osc}$	0.125	0.103	0.238

Table S5 Comparison of calculated EPR parameters and TD-DFT data.

1

^{a)} $g_{iso} = 1/3 \times (g_{xx} + g_{yy} + g_{zz})_3, \Delta g = g_{xx} - g_{zz}$

Table S6 Comparison of minimum and symmetrized non-equilibrium structures.

	PBE0-1/3				
	$[^{Mes}Ni-PCy_3]^+$	$[^{Mes}$ Ni-PCy ₃ $]^+$	$[^{Mes}\mathbf{Pd}\text{-}PCy_3]^+$	$[^{Mes}\mathbf{Pd}\text{-}PCy_3]^+$	$[^{Mes}\mathbf{Pt}-\mathbf{PCy}_3]^+$
		C _s symmetry ^{a)}		C _s symmetry ^{b)}	
d(M-S)/Å	2.177/2.185	2.183	2.319/2.333	2.317	2.304/2.306
d(Ar-S)/Å	1.759/1.757	1.758	1.762/1.722	1.743	1.749/1748
$v^{\text{NIR}}/\text{cm}^{-1}$	5570	5525	5540	5875	7910
$f_{ m osc}$	0.125	0.127	0.103	0.188	0.238
spin populations ^{c)}					
S/S'	0.246/0.281	0.259/0.272	0.093/0.542	0.311/0.320	0.317/0.324
М	0.298	0.288	0.064	0.079	0.115

a) 1 kJ/mol above equilibrium ground state configuration. b) 1 kJ/mol below equilibrium ground state configuration. ^{c)} Mulliken spin populations.

Contour value of isosurfaces (neg. = blue, pos. = red) = 0.0333.

Fig. S33 Kohn-Sham MOs and energies for $[^{\text{Mes}}$ Pd-PCy₃]⁺ from a spin-unrestricted BPE0-1/3-D3(BJ)/ZORA DFT calculation. TD-DFT derived lowest-energy transition (β HOMO $\rightarrow \beta$ LUMO): λ^{NIR} (computed) = 1800 nm (5560 cm⁻¹).

Contour value of isosurfaces (neg. = blue, pos. = red) = 0.0333.

Fig. S34 Kohn-Sham MOs and energies for $[^{\text{Mes}}$ **Pt**-PCy₃]⁺ from a spin-unrestricted BPE0-1/3-D3(BJ)/ZORA DFT calculation. TD-DFT derived lowest-energy transition (β HOMO $\rightarrow \beta$ LUMO): λ^{NIR} (computed) = 1260 nm (7940 cm⁻¹).

Contour value of isosurfaces (neg. = blue, pos. = red) = 0.0333.

Fig. S35 Kohn-Sham MOs and energies for $[^{\text{Mes}}Ni-\text{PCy}_3]^+$ from a spin-unrestricted BPE0-1/3-D3(BJ)/ZORA DFT calculation. TD-DFT derived lowest-energy transition (β HOMO $\rightarrow \beta$ LUMO): λ^{NIR} (computed) = 1795 nm (5570 cm⁻¹).

Fig. S36 Kohn-Sham MOs and energies for $[^{\text{Mes}}Ni-\text{PCy}_3]^+$ from a spin-unrestricted BPE0-1/3-D3(BJ)/ZORA DFT calculation using a C_s symmetric structure. TD-DFT derived lowest-energy transition (β HOMO $\rightarrow \beta$ LUMO): $\lambda^{\text{NIR}}(\text{computed}) = 1810 \text{ nm} (5525 \text{ cm}^{-1}).$

Contour value of isosurfaces (neg. = blue, pos. = red) = 0.0333.

Fig. S37 Kohn-Sham MOs and energies for $[^{\text{Mes}}\mathbf{Pd}$ -PCy₃]⁺ from a spin-unrestricted BPE0-1/3-D3(BJ)/ZORA DFT calculation using a C_s symmetric structure. TD-DFT derived lowest-energy transition (β HOMO $\rightarrow \beta$ LUMO): $\lambda^{\text{NIR}}(\text{computed}) = 1700 \text{ nm} (5875 \text{ cm}^{-1}).$

10 References

- 1. D. Herebian, E. Bothe, F. Neese, T. Weyhermüller and K. Wieghardt, J. Am. Chem. Soc., 2003, **125**, 9116-9128.
- 2. D. Herebian, E. Bothe, E. Bill, T. Weyhermüller and K. Wieghardt, *J. Am. Chem. Soc.*, 2001, **123**, 10012-10023.
- 3. K. Ray, T. Weyhermüller, F. Neese and K. Wieghardt, *Inorg. Chem.*, 2005, 44, 5345-5360.
- 4. K. M. Conner, A. L. Perugini, M. Malabute and S. N. Brown, *Inorg. Chem.*, 2018, **57**, 3272-3286.
- 5. P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller and K. Wieghardt, *J. Am. Chem. Soc.*, 2001, **123**, 2213-2223.
- 6. X. Sun, H. Chun, K. Hildenbrand, E. Bothe, T. Weyhermüller, F. Neese and K. Wieghardt, *Inorg. Chem.*, 2002, **41**, 4295-4303.
- 7. S. Kokatam, T. Weyhermuller, E. Bothe, P. Chaudhuri and K. Wieghardt, *Inorg. Chem.*, 2005, 44, 3709-3717.
- 8. N. Leconte, J. Moutet, T. Constantin, F. Molton, C. Philouze and F. Thomas, *Eur. J. Inorg. Chem.*, 2018, **2018**, 1752-1761.
- 9. R. Kunert, C. Philouze, O. Jarjayes and F. Thomas, *Inorg. Chem.*, 2019, **58**, 8030-8044.
- 10. Y. Shimazaki, T. D. Stack and T. Storr, *Inorg. Chem.*, 2009, **48**, 8383-8392.
- 11. Y. Shimazaki, T. Yajima, F. Tani, S. Karasawa, K. Fukui, Y. Naruta and O. Yamauchi, *J. Am. Chem. Soc.*, 2007, **129**, 2559-2568.
- 12. Y. Shimazaki, N. Arai, T. J. Dunn, T. Yajima, F. Tani, C. F. Ramogida and T. Storr, *Dalton Trans.*, 2011, **40**, 2469-2479.
- 13. F. Koch, H. Schubert, P. Sirsch and A. Berkefeld, *Dalton Trans.*, 2015, 44, 13315-13324.
- 14. G. B. Kauffman, D. O. Cowan, G. Slusarczuk and S. Kirschner, in *Inorg. Synth.*, ed. J. Kleinberg, John Wiley & Sons, Inc., Hoboken, NJ, USA, 1963, vol. 7, ch. cis- and trans-Dichlorodiammineplatinum(II), pp. 239-245.
- 15. H. D. K. Drew, F. W. Pinkard, G. H. Preston and W. Wardlaw, *J. Chem. Soc.*, 1932, DOI: 10.1039/jr9320001895, 1895-1909.
- 16. N. M. Mews, A. Berkefeld, G. Hörner and H. Schubert, *J. Am. Chem. Soc.*, 2017, **139**, 2808-2815.
- 17. S. V. Rosokha, C. L. Stern and J. T. Ritzert, *CrystEngComm*, 2013, **15**.
- 18. M. Schlosser and J. Hartmann, *Angew. Chem. Int. Ed. Engl.*, 1973, **12**, 508-509.
- 19. F. Koch, A. Berkefeld, H. Schubert and C. Grauer, *Chem. Eur. J.*, 2016, **22**, 14640-14647.
- 20. S. Stoll and A. Schweiger, J Magn Reson, 2006, **178**, 42-55.
- 21. F. Murrieta-Guevara and A. Trejo Rodriguez, *Journal of Chemical & Engineering Data*, 1984, **29**, 204-206.
- 22. J. G. Speight, in *Lange's Handbook of Chemistry*, ed. J. G. Speight, McGraw-Hill Education, New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto, 16. edn., 2005, pp. 2.470-494.
- 23. D. F. Evans, J. Chem. Soc., 1959, DOI: 10.1039/jr9590002003.
- 24. G. A. Bain and J. F. Berry, *J. Chem. Educ.*, 2008, **85**.
- 25. L. J. Farrugia, J. Appl. Cryst., 1999, **32**, 837-838.
- 26. G. M. Sheldrick, *Acta Crystallographica Section A: Foundations and Advances* 2008, **64**, 112-122.
- 27. C. B. Hubschle, G. M. Sheldrick and B. Dittrich, *J Appl Crystallogr*, 2011, 44, 1281-1284.
- 28. A. L. Spek, Acta Crystallographica Section D Biological Crystallography, 2009, **65**, 148-155.
- 29. L. J. Farrugia, J. Appl. Cryst., 2012, **45**, 849-854.
- 30. J. Janisch, A. Ruff, B. Speiser, C. Wolff, J. Zigelli, S. Benthin, V. Feldmann and H. A. Mayer, *J. Solid State Electrochem.*, 2011, **15**, 2083-2094.

- 31. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, **22**, 931-967.
- 32. C. Fonseca Guerra, J. G. Snijders, G. te Velde and E. J. Baerends, *Theor. Chem. Acc.*, 1998, **99**, 391-403.
- 33. F. Neese, WIREs Comput. Mol. Sci., 2012, **2**, 73-78.