Supplementary Data

A novel p–n $Mn_{0.2}Cd_{0.8}S/NiWO_4$ heterojunction for highly efficient

photocatalytic H₂ production

Sample	Mn _{0.2} Cd _{0.8} S (mg)	$NiCl_2 \cdot 6H_2O$ (mg)	$Na_2WO_4 \cdot 2H_2O$ (mg)
Mn _{0.2} Cd _{0.8} S/NiWO ₄ -10 wt%	200	15	21
Mn _{0.2} Cd _{0.8} S/NiWO ₄ -30 wt%	200	47	65
$Mn_{0.2}Cd_{0.8}S/NiWO_4$ -50 wt%	200	77	107
Mn _{0.2} Cd _{0.8} S/NiWO ₄ -70 wt%	200	109	151
Mn _{0.2} Cd _{0.8} S/NiWO ₄ -90 wt%	200	140	194
$Mn_{0.2}Cd_{0.8}S$	200	0	0
NiWO ₄	0	140	194

Table S1. The added amount of samples and reagents

Table S2. S_{BET} , pore volume and pore diameter of $Mn_{0.2}Cd_{0.8}S$, NiWO₄ and $Mn_{0.2}Cd_{0.8}S/NiWO_4$ -30 wt% composite

Sample	$S_{BET}^{a} (m^2 g^{-1})$	Pore Volume ^b (cm ³ g ⁻¹)	Pore Diameter ^b (nm)
Mn _{0.2} Cd _{0.8} S	29.63	0.054	1.18
NiWO ₄	172.16	0.112	1.50
Mn _{0.2} Cd _{0.8} S/NiWO ₄ -30 wt%	40.48	0.074	2.52

^aGained by BET test.

^b Relative pressure (P/P₀) of 0.99.

Photocatalyst	Light source	Sacrificial reagent	H_2 production rate (mmol h ⁻¹ g ⁻¹)	Ref.
Mn _{0.2} Cd _{0.8} S/NiWO ₄	300 W Xe lamp $(\lambda \ge$ 420 nm)	Na ₂ S/Na ₂ SO ₃	17.76	This work

Table S3. H₂ production activities of some related metal tungstates-based heterojunction

Zn _{0.7} Cd _{0.3} S/NiWO ₄	5W LED $(\lambda \ge 420 \text{ nm})$	Na_2S/Na_2SO_3	15.95	[51]
CdS/NiWO4	300 W Xe lamp $(\lambda \ge 420 \text{ nm})$	lactic acid	5.07	[52]
NiWO₄/CdS/Pt	550W Xe lamp $(\lambda \ge 420 \text{ nm})$	lactic acid	0.88	[53]
CdS/NiWO₄/CoP	5 W LED	lactic acid	47.7	[S4]
CdS/InWO₄ CdS/CdWO₄	($λ ≥$ 420nm) 5W LED	lactic acid	6.15	[55]
	($\lambda \ge$ 420 nm) 500W Xe lamp	Na_2S/Na_2SO_3	1.805	[S6]
CdS/CdWO ₄	300 W Xe lamp $(\lambda > 420 \text{ nm})$	lactic acid	9.17	[\$7]
CdS/CoWO ₄	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	15.91	[58]
	($\lambda \ge$ 420 nm)			

Fig. S1. XPS survey spectrum of $Mn_{0.2}Cd_{0.8}S/NiWO_4$ -30 wt% composite

Fig. S2. XPS–VB of (a) $Mn_{0.2}Cd_{0.8}S$ and (b) NiWO₄

Fig. S3. Mott–Schottky polts of (a) $Mn_{0.2}Cd_{0.8}S$ and (b) NiWO₄.

REFERENCES

S1 Y. Liu, G. N. Wang, Y. B. Li and Z. L. Jin, J. Colloid Interf. Sci., 2019, 554, 113–124.

- S2 Y. K. Zhang and Z. L. Jin, *Catal. Sci. Technol.*, 2019, **9**, 1944–1960.
- S3 M. J. Li, S. Yokoyama, H. Takahashi and K. Tohji, *Appl. Catal. B*, 2019, **241**, 284–291.
- S4 H. Liu, T. Yan, Z.L. Jin and Q.X. Ma, New J. Chem., 2020, 44, 1426–1438.
- S5 Q. Jian, X.Q. Hao and Z. L. Jin, New J. Chem., 2019, 43, 12668–12677.
- S6 L. Wang and W. Z. Wang, CrystEngComm., 2012, 14, 3315–3320.

S7 X. Jia, M. Tahir, L. Pan, Z.F. Huang, X. W. Zhang and L. Wang, *Appl. Catal. B*, 2016, **198**, 154–161.

S8 H. J. Cui, B. B. Li, Y. Z. Zhang, X. D. Zheng, X. H. Li and Z. Y. Li, Int. J. Hydrogen Energy, 2018, 43, 18242–18252.