Supporting information

Construction of Reduced Graphene Oxide Wrapped Yolk-Shell Vanadium Dioxide Sphere Hybrid Host for High-Performance Lithium-Sulfur Batteries

Zhicui Song, Xiaoli Lu, Qiang Hu, Dunmin Lin, Qiaoji Zheng*,

*Corresponding author:

Email: joyce@sicnu.edu.cn (Qiaoji Zheng); Fax: +86 28 84760802 Tel: +86 28 84760802

Figure S1 CV measurements of different symmetrical battery with Li₂S₆ electrolyte.

Figure S2. Galvanostatic charge/discharge profiles of rGO/S cathode at 0.1 C.

Electrodes	$R_{ m e}(\Omega)$	$R_{ m ct}(\Omega)$
rGO/VO ₂ /S	3.20	21.03
VO ₂ /S	10.35	54.25
rGO/S	5.37	58.57

Table S1. Impedance parameters simulated from the equivalent circuits.

Figure S3. Cycling performance of rGO/VO₂/S at 3 C.

Table S2. The electrochemical performances comparison between rGO/VO₂/S cathode and some reported other kinds of sulfur electrodes with similar sulfur content and mass loading.

cathodes	Sulfur content (wt%)	Mass loading (mg cm ⁻²)	Discharge Capacity (mAh g ⁻¹)	Decay rate (% per cycle)	Ref.
S/SnS ₂ -porous carbon	78%	1.5	750 (300 th cycle at 0.5 C)	0.073%	S1
G/CNT@MnO ₂ @S	81.8%	1.5-2.0	590 (200 th cycle at 1 C)	0.11%	S2
RCE-C03O4@G-S	71%	1.6	423.8 (500 th cycle at 1 C)	0.069%	S 3
FePO ₄ @rGO/S	76.5%	2.1	554 (200 th cycle at 1 C)	0.154%	S4
Co(OH)2@S/CCB	59.29%		576 (200 th cycle at 1 C)	0.144%	S 5
C@AZO/S	70%	2.2	623.5 (300 th cycle at 0.5 C)	0.12%	S6
Cobalt-graphene @CNT/S	76%	1.3-1.6	363 (500 th cycle at 1 C)	0.09%	S7
h-CeO ₂ /sulfur-0.8- CNT/h-CeO ₂ interlayer electrode	80%	1.8	425.5 (500 th cycle at 1 C)	0.073%	S8
PS/Mo ₂ C-CNFs		2.0	406 (500 th cycle at 1 C)	0.136%	S9

p-CNT@Void	~65%	0.65-1.06	526	0.12%	S10
@MnO ₂ /S			(100 th cycle at 1 C)		
VO2 nanosheet@S	67.2%		516	0.257%	S11
			(200 th cycle at 1 C)		
VO2 nanotube/G/S	68.89%	1.2	541	0.09%	S12
			(500 th cycle at 2 C)		
		1.8	516.1	0.07%	
rGO/VO ₂ /S	~70%		(400 th cycle at 1 C)		This
		2.8	342.2	0.078%	work
			(600 th cycle at 3 C)		

References

[S1] Li, Xiaona, et al. SnS₂-compared to SnO₂-stabilized S/C composites toward high-performance lithium-sulfur batteries. ACS applied materials&interfaces 8.30 (2016): 19550-19557.
[S2] Wang, Nan, et al. Construction of ultrathin MnO₂ decorated graphene/carbon nanotube nanocomposites as efficient sulfur hosts for high-performance lithium-sulfur batteries. RSC advances 9.11 (2019): 6346-6355.

[S3] Jiao, Sa, et al. Effective accommodation and conversion of polysulfides using organicinorganic hybrid frameworks for long-life lithium-sulfur batteries. Nanoscale (2020).

[S4] Huang, Cheng, et al. Synergetic restriction to polysulfides by hollow $FePO_4$ nanospheres wrapped by reduced graphene oxide for lithium–sulfur battery. Electrochimica Acta 329 (2020): 135135.

[S5] Niu, Xiao-qing, et al. Metal hydroxide-a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium-sulfur batteries. Journal of Materials Chemistry A 3.33 (2015): 17106-17112.

[S6] Huang, Jiangtao, et al. A mulberry-like hollow carbon cluster decorated by Al-doped ZnO particles for advanced lithium-sulfur cathode. Electrochimica Acta 304 (2019): 62-69.

[S7] Zhang, Ze, et al. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Advanced Energy Materials 7.11 (2017): 1602543.

[S8] Wang, Jianwei, et al. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries. Materials Chemistry Frontiers 3.7 (2019): 1317-1322.

[S9] Zhou, Fei, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano letters 18.2 (2018): 1035-1043.

[S10] Liu, Qian, et al. Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution. Small 14.20 (2018): 1703816.

[S11] Wang, Dashuai, et al. "Insight into the Anchoring and Catalytic Effects of VO₂ and VS₂
Nanosheets as Sulfur Cathode Hosts for Li–S Batteries." ChemSusChem 12.20 (2019): 4671-4678.
[S12] Ning, Yu, et al. "A rational VO₂ nanotube/graphene binary sulfur host for superior lithium-sulfur batteries." Journal of Alloys and Compounds (2020): 155504.