Electronic Supplementary Information(ESI)

Covalent pendulous anthraquinone polymers coupled on graphenes for efficient capacitor storage in both alkaline and acidic media

Tingting Cheng, Yuelin Jiang, Linhui Jin, Aiguo Kong* and Yongkui Shan

School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China

E-mail: agkong@chem.ecnu.edu.cn

CONTENTS

Figure S1. Synthesis of TPDA@NH2-rGO, TPDAB@NH2-rGO and TADA@NH2- rGO.

Figure S2. (A)The extended structure of TPDA; (B) pore size distribution curves of TPDA @NH₂-rGO.

Figure S3. (A) XRD patterns of TPDAB @NH₂-rGO; (B) XRD patterns of TADA@NH₂-rGO; (C) The FT-IR spectra of TPDAB @NH₂-rGO; (D) The FT-IR spectra of TADA@NH₂-rGO.

Figure S4. (A), (B), (C), (D) TEM images of TPDA; (E), (F) SEM of TPDA@NH₂-rGO.

Figure S5. Electrochemical performances measured in 6.0 M KOH. (A) Specific capacitances of TPDA@ NH_2 -rGO at different current densities; (B) Plot for the cyclic performance test of TPDA@ NH_2 -rGO; (C) CV curves of TPDA @ NH_2 -rGO and NH_2 -rGO at 50 mV·s⁻¹; (D) GCD curves of TPDA @ NH_2 -rGO and NH_2 -rGO at 0.2 A·g⁻¹.

Figure S6. Electrochemical performances measured in 6.0 M KOH. (A) CV curves of different COPs at 50 mV·s⁻¹; (B) GCD curves of different COPs at 0.2 A·g⁻¹; (C) CV curves of TPDA @ NH₂-rGO with different NH₂-rGO at 50 mV·s⁻¹; (D) GCD curves of TPDA@ NH₂-rGO with different NH₂-rGO at 0.2 A·g⁻¹.

Figure S7. (A) Initial state of electrode surface; (B) The electrode surface after GCD test for 3 hours; (C) The electrode surface after GCD test for 6 hours.

Figure S8. (A) N₂-sorption isotherm of TADA@NH₂-rGO; (B) Pore size distribution curves of TADA @NH₂- rGO.

Figure S9. Nyquist plot of TADA@NH2-rGO and TPDA@NH2-rGO.

Figure S10. (A) Plot for the cyclic performance test of NH₂-rGO for 2000 cycles; (B) Plot for the cyclic performance test of TPDA for 2000 cycles.

Table S1. Comparison of specific capacitance of TPDA@NH₂-rGO with other porous materials and carbon materials.

Table S2. The values of equivalent circuit parameters calculated from EIS result for TPDA@NH₂-rGO.

Table S3. Comparison of specific capacitance of TPDA@NH2-rGO with different content of NH2-rGO.

Figure S2. (A) The extended structure of TPDA; (B)Pore size distribution curves of TPDA @NH₂-rGO

Figure S3. (A) XRD patterns of TPDAB @NH₂-rGO; (B) XRD patterns of TADA@NH₂-rGO; (C) The FT-IR spectra of TPDAB @NH₂-rGO; (D) The FT-IR spectra of TADA@NH₂-rGO.

Figure S4. (A), (B), (C), (D) TEM images of TPDA; (E) ,(F) SEM of TPDA@NH₂-rGO.

Figure S5. Electrochemical performances measured in 6.0 M KOH. (A) Specific capacitances of TPDA@ NH₂-rGO at different current densities; (B) Plot for the cyclic performance test of TPDA@NH₂-rGO; (C) CV curves of TPDA @ NH₂-rGO and NH₂-rGO at 50 mV·s⁻¹; (D) GCD curves of TPDA @ NH₂-rGO and NH₂-rGO at 0.2 A·g⁻¹.

Figure S6. Electrochemical performances measured in 6.0 M KOH. (A) CV curves of different COPs at 50 mV·s⁻¹; (B) GCD curves of different COPs at 0.2 A·g⁻¹; (C) CV curves of TPDA @ NH₂-rGO with different NH₂-rGO at 50 mV·s⁻¹; (D) GCD curves of TPDA@ NH₂-rGO with different NH₂-rGO at 0.2 A·g⁻¹.

Figure S7. (A) Initial state of electrode surface; (B) The electrode surface after GCD test for 3 hours; (C) The electrode surface after GCD test for 6 hours

Figure S8. (A) N₂-sorption isotherm of TADA@NH2-rGO; (B) Pore size distribution curves of TADA @NH₂- rGO;

Figure S9. Nyquist plot of TADA@NH2-rGO and TPDA@NH2-rGO

Figure S10. (A) Plot for the cyclic performance test of NH₂-rGO for 2000 cycles; (B) Plot for the cyclic performance test of TPDA for 2000 cycles.

Electrode materials	Electrolyte	Specific	Reference
		Capacitance (F·g ⁻¹)	
TPDA@NH2-rGO	$2 \text{ M H}_2 \text{SO}_4$	522	This work
TPDA@NH2-rGO	6 M KOH	390	This work
N-rich composite of CNTs	$1 \text{ M H}_2 \text{SO}_4$	167	S1
ammoxidized coals	7 М КОН	145	S2
N-enriched nanostructured carbons	$1 \text{ M H}_2 \text{SO}_4$	201	S3
CNTs/N-enriched carbon	1 M H ₂ SO ₄	100	S4
N-enriched carbon from melaminemica	6 М КОН	198	S5
nitrogen-doped porous nanofibers	6 М КОН	202	S6
TpDAB based (Pristine CPF)	Na ₂ SO ₄ (not mentioned)	432	S7
TPDA-1 (Pristine POP)	$1 \text{ M H}_2 \text{SO}_4$	348	S8
TAT-CMP-2 (Pristine POP)	1M Na ₂ SO ₄	183	S9
CMP-based hollow	H_2SO_4 (not mentioned)	286	S10
NPC-800	5 M KOH	230	S11
3D HLPC	6 М КОН	342	S12
Nitrogen-rich GMP	6 М КОН	273	S13
TaPa-Py COF	1 M H ₂ SO ₄	209	S14
oxygen functionalized graphene	2 M H ₂ SO ₄	296	S15
Reduced graphene	2 M H ₂ SO ₄	163	S16

 $\label{eq:table_stabl$

Table S2. The values of equivalent circuit parameters calculated from EIS result for TPDA@ NH_2 -rGO.

	TPDA @NH2-rGO	TPDA	NH ₂ -rGO
$\mathrm{Rs}(\Omega)$	0.9248	2.042	0.8541
Cdl (mF)	1.074	0.168	0.5324
$\operatorname{Rct}(\Omega)$	0.2641	1.706	0.1481
$Q(F \cdot s^{(a-1)})$	0.008317	0.03291	0.01165
a	0.8	0.8317	0.6973

Table S3. Comparison of specific capacitance of TPDA@ NH_2 -rGO with different content of NH_2 -rGO.

Electrolyte	TPDA@NH2-rGO-	TPDA@NH2-rGO-26mg	TPDA@NH2-rGO-
	13mg (F·g ⁻¹)	(F · g ⁻¹)	39mg (F·g ⁻¹)
$2 \text{ M H}_2 \text{SO}_4$	268	390	175
6 M KOH	376	522	285

Reference

- S1. G. Lota, K. Lota and E. Frackowiak, *Electrochem. Commun.*, 2007, 9, 1828-1832.
- S2. K. Jurewicz, K. Babeł, A. Ziółkowski and H. Wachowska, J. Phys. Chem. Solids, 2004, 65, 269-273.
- S3. E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl and F. Béguin, *Electrochim. Acta*, 2006, **51**, 2209-2214.
- S4. F. Béguin, K. Szostak, G. Lota and E. Frackowiak, Adv. Mater., 2005, 17, 2380-2384.
- S5. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu and G. Q. Lu, *Adv. Funct. Mater.*, 2009, **19**, 1800-1809.
- L. F. Chen, X. D. Zhang, H. W. Liang, M. Kong, Q. F. Guan, P. Chen, Z. Y. Wu and S. H. Yu, ACS Nano, 2012, 6, 7092-7102.
- S7. B. C. Patra, S. Khilari, L. Satyanarayana, D. Pradhan and A. Bhaumik, Chem. Commun., 2016, 52, 7592-7595.
- S8. P. Bhanja, S. K. Das, K. Bhunia, D. Pradhan, T. Hayashi, Y. Hijikata, S. Irle and A. Bhaumik, ACS Sustain. Chem. Eng., 2018, 6, 202-209.
- S9. X. C. Li, Y. Zhang, C. Y. Wang, Y. Wan, W. Y. Lai, H. Pang and W. Huang, Chem. Sci, 2017, 8, 2959-2965.
- S10. J. Lee, J. Choi, D. Kang, Y. Myung, S. M. Lee, H. J. Kim, Y. J. Ko, S. K. Kim and S. U. Son, ACS Sustain. Chem. Eng., 2018, **6**, 3525-3532.
- S11. X. Liu, L. Zhou, Y. Zhao, L. Bian, X. Feng and Q. Pu, ACS Appl. Mater. Inter., 2013, 5, 10280-10287.
- S12. Q. Liang, L. Ye, Z. Huang, Q. Xu, Y. Bai, F. Kang and Q. Yang, *Nanoscale*, 2014, **6**, 13831-13837.
- S13. K. Yuan, T. Hu, Y. Xu, R. Graf, L. Shi, M. Forster, T. Pichler, T. Riedl, Y. Chen and U. Scherf, *Mater. Chem. Front.*, 2017, **1**, 278-285.
- S14. A. M. Khattak, Z. A. Ghazi, B. Liang, N. A. Khan, A. Iqbal, L. Li and Z. Tang, J. Mater. Chem. A, 2016, 4, 16312-16317.
- S15. C. Singh, N. S., A. Jana, A. K. Mishra and A. Paul, Chem. Commun, 2016, 52, 13179.
- S16. C. Singh, A. K. Mishra and A. Paul, J. Mater. Chem. A 2015, 3, 18557-18563.