Electronic Supplementary Information

Mg-storage properties of hollow copper selenide nanocubes

Jingwei Shen,^a Dong Chen,^a Shun-an Cao,^a Ting Li,^{*b} Wei Luo,^c Fei Xu^{*a}

^{*a*} Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

^b Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.

^c College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.

* E-mail:

Fei Xu (xufei2058@whu.edu.cn)

Ting Li (liting@mail.scuec.edu.cn)

Supplementary data: Additional figures and tables as mentioned in the text

1. Full XPS spectra.

Fig. S1 Full XPS spectra of H-Cu_{2-x}Se and S-Cu_{2-x}Se.

2. Rate capability of S-Cu_{2-x}Se.

Fig. S2 Rate capability of S-Cu_{2-x}Se at different current densities from 100 to 1000 mA g^{-1} . The test started from an activated S-Cu_{2-x}Se.

3. Charge/discharge curves for the rate performance

Fig. S3 Charge/discharge curves for rate performance of (a) H-Cu_{2-x}Se and (b) S-Cu_{2-x}Se.

4. Determination of Mg²⁺ diffusion coefficients for H-Cu_{2-x}Se and S-Cu_{2-x}Se.

Fig. S4 Log(i) vs. log(v) plots for different redox peaks of H-Cu_{2-x}Se and S-Cu_{2-x}Se electrodes.

	H-Cu _{2-x} Se		S-Cu _{2-x} Se	
peak	$i_{\rm p}/v^{1/2}$	$D (\times 10^{-9} \text{ cm}^2 \text{ s}^{-1})$	$\dot{i}_{ m p}/v^{1/2}$	D (×10 ⁻¹⁰ cm ² s ⁻¹)
A1	0.2764	4.3124	0.8086	16.4032
A2	0.4609	11.9911	/	/
C2	-0.1693	1.6179	-0.3429	2.9498
C1	-0.5940	19.9167	-0.4871	5.9525

 Table S1 Calculation of Mg²⁺ diffusion coefficients

The diffusion coefficient of Mg^{2+} is calculated by the following equation:

$i_{\rm p}$ =2.69×10⁵ $n^{3/2}$ AD^{1/2} $v^{1/2}C_{\theta}$

where i_p is the peak current (A), *n* is the number of electrons per molecule during the reaction, *A* (cm²) is the contact area between the electrode and electrolyte, *D* is the diffusion coefficient of Mg²⁺ (cm² s⁻¹), *C*₀ (mol cm⁻³) is the concentration of Mg²⁺ ion in the electrode material, and *v* is the scan rate (V s⁻¹).