Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supplementary Material

Contents

Experimental

General considerations

Synthesis of bis(bis(2,2,2-trifluoroethyl)amino)dihexylaminocyclopropenium chloride semihydrate, $[C_3(NHex_2)(NC_2H_4F_6)_2]Cl.0.5H_2O$

X-ray crystallography

Table 1S. Structure refinement data for [C₃(NHex₂)(N(CH₂CF₃)₂)₂]Cl.0.5H₂O.

Figure 1S. Numbering scheme for the two independent cations in [C₃(NHex₂)(N(CH₂CF₃)₂)₂]Cl.0.5H₂O 5H₂O (H atoms removed for clarity).

Table 2S. Bond distances for [C₃(NHex₂)(N(CH₂CF₃)₂)₂]Cl.0.5H₂O.

Table 3S. Selected bond angles for [C₃(NHex₂)(N(CH₂CF₃)₂)₂]Cl.0.5H₂O.

 Table 4S. Hydrogen-bonding parameters for the dichloride-water cluster environment.

Figure 2S. Infrared spectra of $[C_3(NHex_2)(N(CH_2CF_3)_2)_2]CI.0.5H_2O$ and the HDO and D₂O isotopomers.

Figure 3S. ¹H-NMR spectrum of [C₃(NHex₂)(NC₂H₄F₆)₂]Cl.0.5H₂O in CD₃OD.

Figure 4S. ${}^{13}C{}^{1}H$ -NMR spectrum of $[C_3(NHex_2)(NC_2H_4F_6)_2]CI.0.5H_2O$ in CD₃OD.

Figure 5S. ¹⁹F-NMR spectrum of $[C_3(NHex_2)(NC_2H_4F_6)_2]CI.0.5H_2O$ in CD₃OD.

References

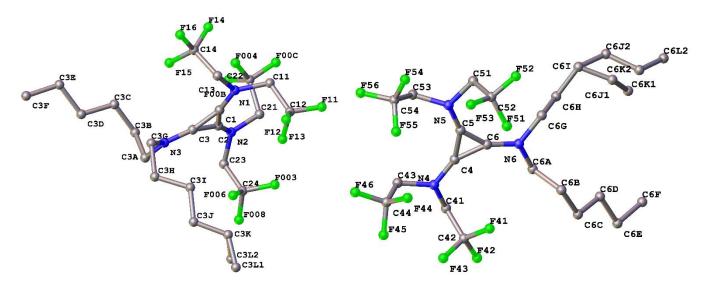
EXPERIMENTAL

General considerations

All the experimental work and sample preparation were carried out under dried nitrogen atmosphere using standard Schlenk techniques. CH₂Cl₂, C₃Cl₅H, diethylether, petroleum ether, methanol, ethanol, D₂O, trihexylamine, and NH(CH₂CF₃)₂ were obtained commercially. CH₂Cl₂ was dried using an in-house solvent purification system. Mid-IR data were collected at room temperature by using a Bruker Alpha spectrometer, operating with a Platinum ATR unit with a diamond crystal. A resolution of 4 cm⁻¹ and 25 scans were taken. ¹H-, ¹³C{¹H}- and ¹⁹F-NMR spectra were collected on an JEOL ECZ400S spectrometer operating at 400, 100 and 376 MHz, respectively, in CD₃OD referenced to residual solvent peaks. The instrument was equipped with a ROYAL HFX probe. Electrospray mass spectrometry was carried out on a Micromass LCT, with samples dissolved in acetonitrile. Microanalyses were performed by Campbell Microanalytical Laboratory, University of Otago, Dunedin.

Synthesis of bis(bis(2,2,2-trifluoroethyl)amino)dihexylaminocyclopropenium chloride semihydrate,

[C₃(NHex₂)(NC₂H₄F₆)₂]Cl.0.5H₂O. NHex₃ (5.056 g, 18.02 mmol) and NH(CH₂CF₃)₂ (8.456 g, 44.61 mmol) were dissolved in dried CH₂Cl₂ (10 mL) and added slowly to C₃Cl₅H (2.290 g, 10.69 mmol) which was dissolved in dried CH₂Cl₂ (30 mL) at 0 °C with stirring. The stirring was continued at ambient temperature for 48 h. CH₂Cl₂ was removed *in vacuo* and column chromatographic separation through silica gel column gave a white powder (0.63 g, 10% yield). A mixture of petroleum ether, CH₂Cl₂ and ethanol (4:3:1 ratio) was used as eluent. Crystals suitable for X-ray diffraction were grown by slow evaporation of an undried methanol-diethyl ether solution. ¹H NMR (CD₃OD, 400 MHz): 4.47 (q, ³J_{HF} = 8.1 Hz, 8H, NCH₂CF₃), 3.52 (t, ³J_{HH} = 7.4 Hz, 4H, NCH₂), 1.70 (m, 4H, NCH₂CH₂CH₂), 1.34 (m, 12H, NCH₂CH₂(CH₂)₃CH₃), 0.93 (t, ³J_{HH} = 6.7 Hz, 6H, CH₃). ¹³C{¹H} NMR (CD₃OD, 100 MHz): 125.51 (q, ¹J_{CF} = 280.3 Hz, NCH₂CF₃), 124.67


 $(\underline{C}N(CH_2CF_3)_2)$, 119.25 $(\underline{C}NHex_2)$, 55.80 (q, ${}^{2}J_{CF}$ = 34.4 Hz, N $\underline{C}H_2CF_3$), 54.64 (NCH₂), 32.73 (NCH₂ $\underline{C}H_2$), 29.08 (NCH₂CH₂ $\underline{C}H_2$), 27.16 (NCH₂CH₂CH₂ $\underline{C}H_2$), 23.73 (NCH₂CH₂CH₂CH₂ $\underline{C}H_2$), 14.36 $(\underline{C}H_3)$. ¹⁹F NMR (CD₃OD, 376 MHz): -72.80 (t, ${}^{3}J_{FH}$ = 8.1 Hz). ES-MS⁺ m/z 580.2573 (100%, M⁺); calculated for C₂₃H₃₄F₁₂N₃⁺ 580.2556. Microanalysis: Exptl C, 43.91; H, 5.64; N, 6.45. Calcd for C₂₃H₃₅ClF₁₂N₃O_{0.5} C, 44.20; H, 5.64; 6.72.

X-ray Crystallography

A suitable crystal was mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. Using Olex2,^[1] the structure was solved with the XS structure solution program^[2] using Direct Methods and refined with the XL refinement package^[2] using Least Squares minimisation with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms on the methylene groups were refined isotropically at their calculated positions and methyl groups were refined as rotating groups. The water protons were located from the density difference map and refined isotropically. CCDC 1988268 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Parameter	Value	Parameter	Value
formula	$C_{46}H_{70}Cl_2F_{24}N_6O$	Т [К]	119.99(10)
a [Å]	10.6228(4)	F(000)	2584
b [Å]	38.0161(17)	2ϑ range [°]	7.498–142.998
<i>c</i> [Å]	15.0865(5)	index ranges	$-12 \le h \le 13$
α [°]	90		–33 ≤ <i>k</i> ≤ 46
в [°]	94.999(3)		–18 ≤ / ≤ 18
γ[°]	90	reflections collected	26625
<i>V</i> [Å ³]	6069.3(4)	independent reflns	11795
Ζ	4	R(int)	0.0783
$ ho_{ m calc}$ [g cm ⁻³]	1.368	data/restraints/parameters	11795/7/749
crystal system	monoclinic	GoF on <i>F</i> ²	1.002
space group	P21/n	$R_1/wR_2 [l > 2\sigma(l)]$	0.0699/0.1618
shape/colour	plate/colourless	R_1/wR_2 (all data)	0.1335/0.1879
crystal size [mm]	0.234 × 0.123 × 0.025	$\Delta ho_{ m max/min}/ m e~[\AA^{-3}]$	0.525/-0.337
μ [mm ⁻¹]	1.974	CCDC number	1988268

Table1S. Structure refinement data for [C₃(NHex₂)(N(CH₂CF₃)₂)₂]Cl.0.5H₂O.

Figure 1S. Numbering scheme for the two independent cations in $[C_3(NHex_2)(N(CH_2CF_3)_2)_2]CI.0.5H_2O$ (H atoms removed for clarity).

Table 25. Bond distances (Å) for $[C_3(NHex_2)(N(CH_2CF_3)_2)_2]CI.0.5H_2O$.

01–H1A	0.79(16)	O1–H1B	0.85(2)
C1–C2	1.372(5)	C5–C4	1.357(6)
C1–C3	1.394(5)	C6–C4	1.393(6)
C3–C2	1.388(5)	C5–C6	1.367(6)
N1-C1	1.338(5)	N4-C4	1.346(5)
N1-C11	1.468(5)	N4-C41	1.451(6)
N1–C13	1.465(4)	N4–C43	1.454(6)
N2-C2	1.347(5)	N5–C5	1.362(5)
N2-C21	1.450(4)	N5-C51	1.459(5)
N2-C23	1.463(5)	N5-C53	1.461(6)
N3–C3	1.305(5)	N6-C6	1.309(6)
N3-C3A	1.477(5)	N6–C6G	1.478(6)
N3-C3G	1.473(5)	N6–C6A	1.468(6)
C11–C12	1.489(7)	C41–C42	1.492(7)
F11–C12	1.326(6)	F41–C42	1.351(6)
F12–C12	1.329(7)	F42–C42	1.319(6)
F13–C12	1.353(5)	F43–C42	1.345(7)
C13–C14	1.507(6)	C43–C44	1.491(8)
F14–C14	1.340(5)	F44–C44	1.310(7)
F15–C14	1.343(5)	F45-C44	1.303(7)
F16–C14	1.343(4)	F46-C44	1.342(7)
C21–C22	1.518(6)	C51–C52	1.500(7)
F004–C22	1.339(4)	F51–C52	1.338(5)
F00B-C22	1.327(5)	F52–C52	1.336(5)
F00C-C22	1.339(4)	F53–C52	1.331(6)
C23–C24	1.501(6)	C53–C54	1.489(7)
F003–C24	1.338(5)	F54–C54	1.325(6)
F006–C24	1.349(5)	F55–C54	1.316(6)
F008–C24	1.339(5)	F56–C54	1.352(6)
C3A–C3B	1.521(7)	C6A–C6B	1.524(8)
C3B–C3C	1.509(7)	C6B–C6C	1.543(8)
C3C–C3D	1.469(8)	C6C–C6D	1.487(8)
C3D–C3E	1.543(9)	C6D–C6E	1.542(12)
C3E–C3F	1.504(10)	C6E–C6F	1.603(13)
C3G–C3H	1.519(6)	C6G–C6H	1.456(9)
C3H–C3I	1.516(7)	C6I–C6H	1.499(8)
C3I–C3J	1.512(8)	C6I–C6J1	1.42(2)
СЗЈ–СЗК	1.498(10)	C6J1–C6K1	1.442(18)
C3K–C3L1	1.386(15)	C6K1–C6L1	1.521(19)
C3K–C3L2	1.389(17)	C6I–C6J2	1.508(13)
		C6J2–C6K2	1.452(18)
		C6L2–C6K2	1.545(19)

Table 35. Selected bond angles (°) for $[C_3(NHex_2)(N(CH_2CF_3)_2)_2]CI.0.5H_2O$.

H1A-O1-H1B	101(10)			
C2-C1-C3	60.2(3)	C5-C4-C6	59.6(3)	
N1-C1-C2	150.2(3)	N4-C4-C5	151.5(4)	
N1-C1-C3	149.6(3)	N4-C4-C6	148.9(4)	
C1-C2-C3	60.7(3)	C4-C5-C6	61.5(3)	
N2-C2-C1	150.7(4)	C4-C5-N5	149.4(4)	
N2-C2-C3	148.6(4)	N5-C5-C6	149.1(4)	
C2-C3-C1	59.1(3)	C5-C6-C4	58.9(3)	
N3-C3-C1	152.2(4)	N6-C6-C4	150.8(4)	
N3-C3-C2	148.7(4)	N6-C6-C5	150.2(4)	

C1-N1-C13	120.7(3)	C4-N4-C41	119.4(4)	
C1-N1-C11	120.1(3)	C4-N4-C43	119.4(4)	
C13-N1-C11	119.2(3)	C41-N4-C43	119.0(4)	
C2-N2-C21	120.4(3)	C5-N5-C51	118.2(4)	
C2-N2-C23	118.1(3)	C5-N5-C53	120.2(4)	
C21-N2-C23	118.4(3)	C51-N5-C53	118.0(3)	
C3-N3-C3A	119.1(3)	C6-N6-C6G	121.0(4)	
C3-N3-C3G	121.8(3)	C6-N6-C6A	121.9(4)	
C3G-N3-C3A	119.2(3)	C6A-N6-C6G	116.9(4)	
N1-C11-C12	110.2(3)	N4-C41-C42	112.0(4)	
N1-C13-C14	109.8(4)	N4-C43-C44	114.6(5)	
N2-C21-C22	110.3(3)	N5-C51-C52	110.1(4)	
N2-C23-C24	110.6(3)	N5-C53-C54	112.8(4)	
N3-C3A-C3B	111.9(3)	N6-C6A-C6B	111.7(4)	
N3-C3G-C3H	112.5(3)	N6-C6G-C6H	114.7(5)	

Table 4S. Hydrogen-bonding parameters for the dichloride-water cluster environment.

Hydrogen bond	ClC (Å)	ClH (Å)	Cl–H-C (°)
Cl1-H13A-C13	3.444(4)	2.6038(10)	145.0(2)
Cl1-H21B-C21	3.640(4)	2.7677(10)	150.0(3)
Cl1-H23B-C23	3.432(4)	2.4994(10)	161.3(2)
Cl2-H11B-C11	3.612(4)	2.6925(10)	158.5(2)
Cl2-H13B-C13	3.509(4)	2.6069(10)	154.7(3)
Cl2-H41B-C41	3.543(5)	2.6037(10)	163.2(3)
Cl2-H53B-C53	3.659(4)	2.7368(10)	159.2(3)

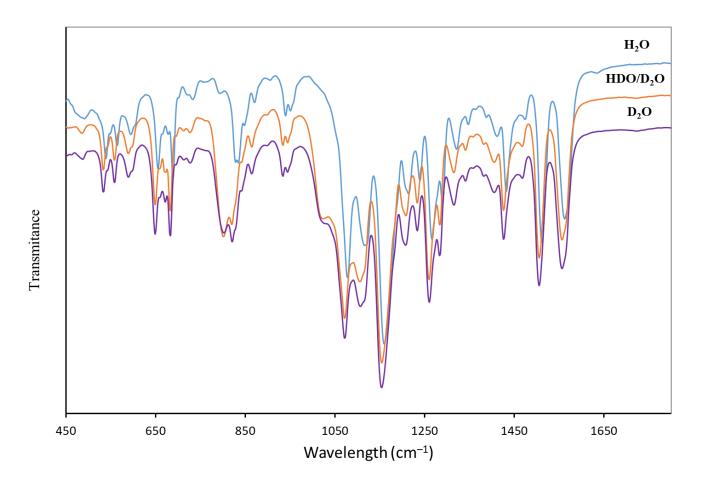


Figure 2S. Infrared spectra of $[C_3(NHex_2)(N(CH_2CF_3)_2)_2]CI.0.5H_2O$ and the HDO and D₂O isotopomers.

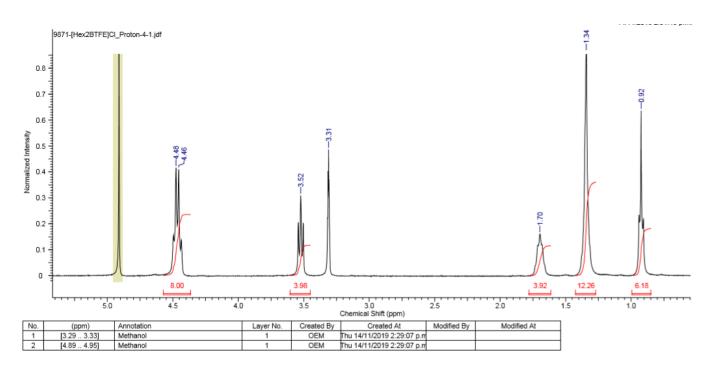


Figure 3S. ¹H-NMR spectrum of $[C_3(NHex_2)(NC_2H_4F_6)_2]CI.0.5H_2O$ in CD₃OD.

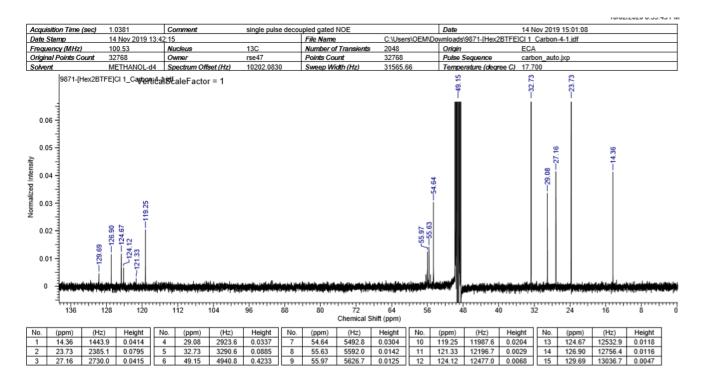


Figure 4S. ${}^{13}C{}^{1}H$ -NMR spectrum of $[C_3(NHex_2)(NC_2H_4F_6)_2]CI.0.5H_2O$ in CD₃OD.

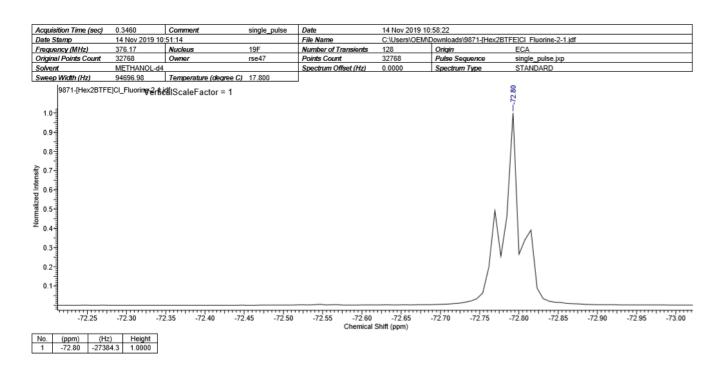


Figure 5S. ¹⁹F-NMR spectrum of [C₃(NHex₂)(NC₂H₄F₆)₂]Cl.0.5H₂O in CD₃OD.

References

- [1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- [2] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.