Mixed-Ligand Lanthanide Complexes Supported by Ditopic Bis(Iminomethyl)-Phenol/Calix[4]arene Macrocycles: Synthesis, Structures, and Luminescence Properties of $[Ln_2(L^2)(MeOH)_2]$ (Ln = La, Eu, Tb, Yb)

Steve Ullmann,^{*a,b*} Peter Hahn,^{*a*} Parvathy Mini,^{*c*} Kellie L. Tuck,^{*c*} Axel Kahnt,^{*d*} Bernd Abel,^{*d,e*} Matias E. G. Suburu,^{*f,g*} Cristian A. Strassert,^{*f,g*} and Berthold Kersting^{*a**}

^a Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany, E-mail: <u>b.kersting@uni-leipzig.de</u> Fax: +49(0)341-97-36199
^b Institut für Nichtklassiche Chemie e.V., Permoserstraße. 15, D-04318 Leipzig, Germany
^c School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
^d Leibniz Institute of Surface Engineering (IOM), Department of Functional Surfaces, Permoserstr. 15, D-04318 Leipzig, Germany
^e Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103 Leipzig, Germany
^f Institut für Anorganische und Analytische Chemie, CiMIC, SoN - Westfälische Wilhelms-Universität Münster - Corrensstraße 28/30, 48149 Münster, Germany
^g CeNTech - Westfälische Wilhelms-Universität Münster - Heisenbergstraße 11, 48149 Münster, Germany

Supporting Information

Content

- 1. Analytical data for $[La_2(L^2)(MeOH)_2]$ (1)
- 2. Analytical data for $[Eu_2(L^2)(MeOH)_2]$ (2)
- 3. Analytical data for [Tb₂(L²)(MeOH)₂] (3)
- 4. Analytical data for $[Yb_2(L^2)(MeOH)_2]$ (4)
- 5. Spectrophotometric titrations / Determination of Stability Constants
- 6. Determination of Coordination Geometries

7. Luminescence Properties of $[HNEt_3][Eu_2(HL_1)(L_1)]$, $[HNEt_3][Tb_2(HL_1)(L_1)]$, $[Eu_2(L^2)(MeOH)_2]$ (**2**) and $[Tb_2(L^2)(MeOH)_2]$ (**3**)

1. Analytical data for [La₂(L²)(MeOH)₂] (1)

Fig S1. FT-IR spectrum of 1.

Fig. S2. ESI mass spectrum of **1** (MeOH/CH₂Cl₂ solution, 10⁻⁵ M). The ESI mass spectrum showed peaks for the dinuclear La^{III} complex, but with very low intensity, suggesting a rather labile nature under the experimental conditions. The signal at m/z = 1633.386 (inset) and m/z 1696.389 can be attributed to $[La_2(L^2)+H^+]^+$ and $[La_2(L^2)(MeOH)_2]^+$ cations.

Analytical data for [Eu₂(L²)(MeOH)₂] (2)

Fig. S3. FT-IR spectrum of 2.

Fig. S4. ESI mass spectrum of **2** (mixed MeOH/EtOH/CH₂Cl₂ solution, 10⁻⁵ M). The ESI mass spectrum showed peaks for the dinuclear Eu^{III} complex but with very low intensity. The signals at m/z 1677.464 (inset) and at 1722.451 can be attributed to $[Eu_2(L^2)(H_2O)+H^+]^+$ and $[Eu_2(L^2)(MeOH)_2]^+$ cations, respectively.

2. Analytical data for [Tb₂(L²)(MeOH)₂] (3)

Fig. S5. FT-IR spectrum of **3**.

Fig. S6. ESI mass spectrum of **3** (mixed MeOH/CH₂Cl₂ solution, 10^{-5} M). The ESI-MS spectrum showed only weak signals at m/z 1705.500 and 1737.435 attributable to dinuclear $[Tb_2(L^2)(MeOH)+H^+]^+$ and $[Tb_2(L^2)(MeOH)_2]^+$ cations, respectively. The base peak at 681.313 seen in the spectra of **1**, **2** and **4** is absent in this case for yet unknown reasons.

3. Analytical data for [Yb₂(L²)] (4)

Fig S7. FT-IR spectrum of 4.

Fig. S8. ESI mass spectrum of 4 (mixed MeOH/CH₂Cl₂ solution, 10^{-5} M). The ESI-MS spectrum showed only a weak signal at m/z 1765.437 which corresponds to a $[Yb_2(L^2)(MeOH)_2]^+$ cation.

4. Spectrophotometric titrations / Determination of Stability Constants

Batch data for [La₂(L²)(MeOH)₂] (1)

Fig. S9. Spectrophotometric titration of H_6L^2 with La(NO₃)₃·6H₂O in a CH₂Cl₂/MeOH (1/1 v/v) solvent mixture (2·10⁻⁵ M concentration) at constant ionic strength (10⁻² M NⁿBu₄PF₆, T = 298 K) in the presence of 2·10⁻⁴ M NEt₃. The green curve refers to a final molar ratio of M/H₆L² = 5.0. The inset shows the evolution of selected absorbance values versus the [La³⁺]/[(L²)⁶⁻] molar ratio.

HypeSpec refinement output (see main text for titration conditions)

Project title: Titration of H_6L^2 by La(NO₃)₃ Converged in 1 iterations with sigma = 3.4384standard Log beta value deviation $[La(L^2)]$ 0.0485 5.4163 $[La_2(L^2)]$ 11.4865 0.0549 Correlation coefficients 2 0.442 1 Parameter numbers $1 [La(L^2)]$ 2 [$La_2(L^2)$]

Fig. S10. Titration isotherm extracted at 302 nm (left panel), spectrum corresponding to the 11th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H_6L^2 (red), $La(NO_3)_3$ (green), the 1:1 complex (brown) and the 1:2 complex (blue) to the total absorbance.

Batch data for [Eu₂(L²)(MeOH)₂] (2)

HypeSpec refinement output (see main text for titration conditions)

Project title: Titration of H_6L^2 by Eu(NO₃)³ Converged in 1 iterations with sigma = 4.0091standard Log beta value deviation [Eu(L²)] 6.0139 0.0686 $[Eu_2(L^2)]$ 12.0494 0.0911 Correlation coefficients 0.741 2 1 Parameter numbers $1 [Eu(L^2)]$ 2 [$Eu_2(L^2)$]

Fig. S11. Titration isotherm extracted at 389 nm (left panel), spectrum corresponding to the 10th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H_6L^2 (red), Eu(NO₃)₃ (green), the 1:1 complex (brown) and the 1:2 complex (blue) to the total absorbance.

Fig. S12. Spectrophotometric titration of H_6L^2 with $Tb(NO_3)_3 \cdot 6H_2O$ in a $CH_2Cl_2/MeOH$ (1/1 v/v) solvent mixture (2.5 $\cdot 10^{-5}$ M concentration) at constant ionic strength (10^{-2} M $N^nBu_4PF_6$, T = 298 K) in the presence of $2 \cdot 10^{-4}$ M NEt₃. The green curve refers to a final molar ratio of $M/H_6L^2 = 4.0$. The inset shows the evolution of selected absorbance values versus the $[Tb^{3+}]/[(L^2)^{6-}]$ molar ratio.

HypeSpec refinement output (see main text for titration conditions)

Project title: Titration of $\rm H_6L^2$ by Tb(NO_3)_3 Converged in 1 iterations with sigma = 2.6220 standard Log beta value deviation [Tb(L²)] 6.5596 0.0605 13.2028 0.1025 $[Tb_2(L^2)]$ Correlation coefficients 2 0.918 1 Parameter numbers $1 [Tb(L^2)]$ 2 $[Tb_2(L^2)]$

Fig. S13. Titration isotherm extracted at 408 nm (left panel), spectrum corresponding to the 14th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H_6L^2 (red), $Tb(NO_3)_3$ (green), the 1:1 complex (brown) and the 1:2 complex (blue) to the total absorbance.

Fig. S14. Spectrophotometric titration of H_6L^2 with Yb(NO₃)₃·5H₂O in a CH₂Cl₂/MeOH (1/1 v/v) solvent mixture (2·10⁻⁵ M concentration) at constant ionic strength (10⁻² M NⁿBu₄PF₆, T = 298 K) in the presence of 2·10⁻⁴ M NEt₃. The green curve refers to a final molar ratio of $M^{3+}/H_6L^2 = 5.0$. The inset shows the evolution of selected absorbance values versus the [Yb³⁺]/[(L²)⁶⁻] molar ratio.

HypeSpec refinement output (see main text for titration conditions)

Project title: Titration of H_6L^2 by Yb(NO₃)₃ Converged in 1 iterations with sigma = 1.0518standard Log beta value deviation [Yb(L²)] 5.2480 0.0772 $[Yb_2(L^2)]$ 11.5752 0.0766 Correlation coefficients 2 0.468 1 Parameter numbers $1 [Yb(L^2)]$ 2 [$Yb_2(L^2)$]

Fig. S15. Titration isotherm extracted at 409 nm (left panel), spectrum corresponding to the 12th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H_6L^2 (red), Yb(NO₃)₃ (green), the 1:1 complex (brown) and the 1:2 complex (blue) to the total absorbance.

6. Determination of Coordination Geometries

Determination of Coordination Geometries utilizing SHAPE

The coordination geometries of the lanthanide ion in complexes $[HNEt_3][Ln_2(HL^1)(L1)]$ and $[Ln_2(L^2)_2(MeOH)_2]$ were examined utilizing the SHAPE program.¹ According to SHAPE, deviations from ideal coordination geometry are represented by a symmetry factor, that increases upon increasing distortions from the ideal geometry, for which the deviation factor is zero.

Several coordination environments were considered for the seven-coordinate Eu^{3+} ions in $(HNEt_3)[Eu_2(HL^1)(L1)]$. According to SHAPE, the coordination geometry is best described as intermediate between a **capped octahedron** and **a capped trigonal prismatic coordination geometry**.

Compound ^{a)}	(HNEt ₃)[Ln ₂ (HL ¹)(L1)]			
Coordination Geometry	Abbreviation	Symmetry	Symmetry Factor Ln1	Symmetry Factor Ln2
Heptagon	HP-7	D _{7h}	29.097	30.205
Hexagonal pyramid	HPY-7	C _{6v}	17.958	19.332
Pentagonal bipyramid	PBPY-7	D _{5h}	4.519	4.050
Capped octahedron	COC-7	C _{3v}	2.257	2.368
Capped trigonal prism	CTPR-7	C _{2v}	2.616	2.369
Johnson pentagonal bipyramid J13	JPBPY-7	D _{5h}	7.260	6.941
Johnson elongated triangular pyramid J7	JETPY-7	C3v	16.624	16.584

a) Data refer to the crystal structure of the Gd complex.

According to SHAPE, the coordination geometry of the seven-coordinate Ln^{3+} ions in the $[Ln_2(L^2)(MeOH)_2]$ complexes is best described as a **capped octahedral (for Eu1)** or **capped trigonal octahedral (Eu2, Tb1, Tb2)**. The other complexes (Ln = La, Yb) are assumed to be isostructural to the Eu and Tb complexes and to exhibit similar coordination environments.

Compound			$[Eu_2(L^2)(MeOH)_2]$		[Tb ₂ (L ²)(MeOH) ₂]	
Coordination Geometry	Abbreviation	Symmetry	Factor	Factor	Factor	Factor
			Eu1	Eu2	Tb1	Tb2
Heptagon	HP-7	D _{7h}	30.309	30.048	29.446	30.526
Hexagonal pyramid	HPY-7	C _{6v}	18.806	20.891	20.301	20.734
Pentagonal bipyramid	PBPY-7	D _{5h}	6.605	4.932	6.540	5.620
Capped octahedron	COC-7	C _{3v}	1.428	1.821	1.760	1.493
Capped trigonal prism	CTPR-7	C _{2v}	1.917	1.300	1.125	1.309
Johnson pentagonal	JPBPY-7	D _{5h}	8.558	7.666	8.522	8.385
bipyramid J13						
Johnson elongated triangular	JETPY-7	C3v	15.979	18.148	17.086	16.506
pyramid J7						

7. Luminescence Properties of $[HNEt_3][Eu_2(HL_1)(L_1)]$, $[HNEt_3][Tb_2(HL_1)(L_1)]$, $[Eu_2(L^2)(MeOH)_2]$ (2) and $[Tb_2(L^2)(MeOH)_2]$ (3)

Fig. S16. UV–vis absorption spectra of H_6L^2 , $[Eu_2(L^2)(MeOH)_2]$ (2), $[Tb_2(L^2)(MeOH)_2]$ (3) (2.5·10⁻⁵ M concentration), $[HNEt_3][Eu_2(HL^1)(L^1)]$ and $[HNEt_3][Tb_2(HL^1)(L^1)]$ (5·10⁻⁵ M) in CH₂Cl₂/MeOH (1/1, v/v) at 298 K. Inset: spectra of PMMA films 4 wt% doped with the respective complexes (thickness ≈ 0.2 mm).

Fig. S17. Excitation spectra of $[\text{HNEt}_3][\text{Eu}_2(\text{HL}^1)(\text{L}^1)]$, $[\text{HNEt}_3][\text{Tb}_2(\text{HL}^1)(\text{L}^1)]$, $[\text{Eu}_2(\text{L}^2)(\text{MeOH})_2]$ (2), and $[\text{Tb}_2(\text{L}^2)(\text{MeOH})_2]$ (3) at 77 K and 298 K immobilized in a PMMA thin film (4 wt%, thickness ~ 0.2 mm) and in the solid state for 3 upon monitoring at 615 nm (Eu³⁺) and 545 nm (Tb³⁺).

6. Photoluminescence properties of $[Eu_2(L^2)(MeOH)_2]$ (2) and $[Tb_2(L^2)(MeOH)_2]$ (3)

Fig. S18. Emission (λ_{ex} = 360 nm) and excitation (λ_{em} = 610 nm) spectra of Eu³⁺ complex **2** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix.

Table S1. Lifetimes ($\lambda_{ex} = 376.7 \text{ nm}$), photoluminescence quantum yields ($\lambda_{ex} = 360 \text{ nm}$) and deactivation rate constants for Eu complex **2** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix.

Emission wavelength (nm)	$ \begin{array}{c} \tau_1 \overset{a)}{} \\ (\mu s) \end{array} $	$ \begin{array}{c} \tau_2 \overset{a)}{} \\ (\mu s) \end{array} $		Ф _L (%)	$k_{\rm r}$ (s ⁻¹)	$k_{\rm nr}$ (s ⁻¹)
580	908 \pm 17 (10)	370 ± 4 (90)	430 ± 20		80 ± 50	$(2.3 \pm 0.1) \ge 10^3$
610	787 ± 14 (14)	372 ± 2 (86)	402 ± 6	3 ± 2	80 ± 50	$(2.41 \pm 0.09) \text{ x}10^3$
630	860 ± 30 (9)	383 ± 6 (91)	427 ± 9		80 ± 50	$(2.3 \pm 0.1) \times 10^3$

a) Relative amplitudes are given in parentheses as %. b) Amplitude-weighted average lifetime.

Fig. S19. Left: Time-resolved luminescence decay of Eu³⁺ complex **2** in a glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 580 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S20. Left: Time-resolved luminescence decay of Eu^{3+} complex **2** in a glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 610 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S21. Left: Time-resolved luminescence decay of Eu³⁺ complex **2** in a glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 630 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S22. Emission (λ_{ex} = 360 nm) and excitation (λ_{em} = 543 nm) spectra of Tb³⁺ complex **3** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix.

Table S2. Lifetimes (λ_{ex} = 376.7 nm), photoluminescence quantum yields (λ_{ex} = 360 nm) and deactivation rate constants for Tb³⁺ complex **3** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix

Emission	$ au_1^{a}$	$ au_2^{a}$	$\tau_{av}^{b)}$	$arPhi_{ m L}$	k _r	k _{nr}
wavelength	(µs)	(µs)	(µs)	(%)	(s ⁻¹)	(s ⁻¹)
(nm)						
490	1582 ± 15	565 ± 18	1040 ± 30		180 ± 30	$(7.8 \pm 0.5) \ge 10^2$
	(71)	(29)		10 + 2		
543	1484 ± 9	451 ± 8	900 ± 30	19 ± 2	280 ± 40	$(1.19 \pm 0.07) \times 10^3$
	(71)	(29)				

a) Relative amplitudes are given in parentheses as %. b) Amplitude-weighted average lifetime.

Fig. S23. Left: Time-resolved luminescence decay of Tb³⁺ complex **3** in a glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 490 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S24. Left: Time-resolved luminescence decay of Tb³⁺ complex **3** in a glassy matrix of CH₂Cl₂/MeOH 1:1 at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 543 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S25. Emission (λ_{ex} = 360 nm) and excitation (λ_{em} = 607 nm) spectra of Eu³⁺ complex **2** at 77 K in the solid state.

Table S3. Lifetimes (λ_{ex} = 376.7 nm), photoluminescence quantum yields (λ_{exc} = 360 nm) and deactivation rate constants for Eu³⁺ complex **2** at 77 K in the solid state.

Emission	$ au_1^{a}$	$ au_2^{a}$	$ au_{av}{}^{b)}$	$arPhi_{ m L}$	k _r ^c	$k_{ m nr}$ d
wavelength	(µs)	(µs)	(µs)	(%)	(s ⁻¹)	(s ⁻¹)
(nm)						
607	258 ± 3	90 ± 1	143 ± 4		< 140	$(6.98 > k_{\rm nr} >$
	(31)	(69)		~ 2		6.84) x 10 ³
630	253 ± 3	87 ± 2	139 ± 4		< 144	$(7.20 > k_{\rm nr} >$
	(31)	(69)				7.06) x 10 ³

^{a)} Relative amplitudes are given in parentheses as %. ^{b)} Amplitude-weighted average lifetime. ^{c)} The upper limit of the Φ_L is used for the calculation. ^{d)} The upper and lower limits of the Φ_L are used to calculate k_{nr} .

Fig. S26. Left: Time-resolved luminescence decay of Eu^{3+} complex **2** in the solid state at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 607 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S27. Left: Time-resolved luminescence decay of Eu³⁺ complex **2** in the solid state at 77 K, including the residuals ($\lambda_{exc} = 376.7 \text{ nm}$, $\lambda_{em} = 630 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S28. Emission (λ_{ex} = 360 nm) and excitation (λ_{em} = 550 nm) spectra of Tb³⁺ complex **3** at 77 K in the solid state.

Table S4. Lifetimes ($\lambda_{ex} = 376.7 \text{ nm}$), photoluminescence quantum yields and deactivation rate constants of Tb³⁺ complex **3** at 77 K in the solid state ($\lambda_{ex} = 360 \text{ nm}$)

Emission wavelength (nm)	$ au_1^{a}$	$ au_2^{a}$	$ au_{av}^{b)}$	Ф _L (%)	$k_{\rm r} {}^c$ (s ⁻¹)	k _{nr} ^d (s ⁻¹)
500	2.6 ± 0.1	$0.41 \pm 0.01 \text{ ns}$	0.50 ± 0.03		$< 4 \text{ x } 10^{7}$	$(1.26 > k_{\rm nr} > 1.23)$
	ns (22)	(78)	ns	~ 2		x 10 ⁹
550	$62 \pm 1 \ \mu s$	$17.7 \pm 0.06 \ \mu s$	$29 \pm 1 \ \mu s$		< 6.9 x	$(3.49 > k_{\rm nr} > 3.42)$
	(27)	(73)			102	x 10 ⁴

^{a)} Relative amplitudes are given in parentheses as %. ^{b)} Amplitude-weighted average lifetime. ^{c)} The upper limit of the Φ_L is used for the calculation. ^{d)} The upper and lower limits of the Φ_L are used to calculate k_{nr} .

Fig. S29. Left: Time-resolved luminescence decay of Tb³⁺ complex **3** in the solid state at 77 K (blue), including the instrument response function (red) and the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 500 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S30. Left: Time-resolved luminescence decay of Tb³⁺ complex **3** in the solid state at 77 K, including the residuals ($\lambda_{ex} = 376.7 \text{ nm}$, $\lambda_{em} = 550 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Fig. S31. Emission spectra (λ_{ex} = 360 nm) of Eu³⁺ complex **2** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix and solid state and at 298 K as a powder.

Fig. S32. Emission spectra (λ_{ex} = 360 nm) of Tb³⁺ complex **3** at 77 K in a CH₂Cl₂/MeOH 1:1 glassy matrix and in the solid state and at 298 K as a powder.