Electronic Supplementary Information

Understanding KO⁴Bu in Atomic Layer Deposition *in situ* Mechanistic Studies of the KNbO₃ Process

Henrik H. Sønsteby^{1,2*}, Veronica A.-L. K. Killi¹, Thomas A. Storaas¹, Devika Choudhury²,

Jeffrey W. Elam^{2,3}, Helmer Fjellvåg¹ and Ola Nilsen¹*

¹Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway ²Argonne National Laboratory, Argonne, Illinois 60439, USA ³Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Lemont, IL 60439, USA

*Corresponding e-mails: henrik.sonsteby@kjemi.uio.no, ola.nilsen@kjemi.uio.no

Supplementary Figure A:

Supplementary Figure A: Net cycle difference FT-IR spectra, showing the changes in surface species after the Nb(OEt)₅ (green) and H₂O (blue) pulse, respectively.

Supplementary Figure B: Extrapolation of increasing growth per cycle (GPC) for different pulsed concentrations of KO'Bu:Nb(OEt)₅ to estimate the GPC of the binary KO'Bu + H₂O process.

Supplementary Figure C:

Supplementary Figure C: Highest possibly areal density of the KO^tBu tetramer on the surface oxygen lattice of Nb₂O₅. Blue circles indicate the projected diameter of the KO^tBu molecule, while red dots represent the oxygen lattice. The black dashed line represents the surface unit cell of Nb₂O₅.

Supplementary Figure D: Net cycle difference FT-IR spectra, showing the changes in surface species after the KO'Bu (purple) and H₂O (blue) pulse, respectively.