ELECRONIC SUPPLEMENTAR INFORMATION (ESI)

Slow magnetic relaxation in penta-coordinate cobalt(II) field-induced

single-ion magnets (SIMs) with easy-axis magnetic anisotropy[†]

Salah S. Massoud,^{*a,b} Zoe E. Perez,^a Jessica R. Courson,^a Roland C. Fischer,^c Franz A.

Mautner,^d Ján Vančo,^e Michal Čajan,^e Zdeněk Trávníček^{*,e}

^a Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370 Lafayette, LA, USA, E-mail: <u>ssmassoud@louisiana.edu</u>

^b Department of Chemistry, Faculty of Sciences, Alexandria University, Moharam Bey, Alexandria, Egypt

^c Institut für Anorganische Chemie, Technische Universität Graz, A-8010 Graz, Austria

^d Institut für Physikalische and Theoretische Chemie, Technische Universität Graz,

A-8010 Graz, Austria

^e Regional Centre of Advanced Technologies and Materials, Division of Biologically Active Complexes and Molecular Magnets, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic, E-mail: <u>zdenek.travnicek@upol.cz</u>

^{*} Corresponding authors: E-mail: <u>ssmassoud@louisiana.edu</u>, Tel. +01 337-482-5672, fax: +01 337-482-5676 (SSM). E-mail: <u>zdenek.travnicek@upol.cz</u>, Tel. +420 585-634-4545 (Z. Trávníček).

^{*} Electronic supplementary information (ESI) available: Crystallographic data for selected bond parameters for compounds 1 and 2 are summarized in Tables S1 and S2 as well as the corresponding non-covalent interactions are shown in Tables S3 and S4, respectively. The computational details are given in tables S5–S8. X-ray powder diffractions of the two compounds and packing views are given in Figs S1-S4. The magnetic properties of the complexes are represented in Figs S5-S8. Selected spectral data for Ligands and their complexes are illustrated in Figs. S9-S11, and S12-S13, respectively. The solid state UV/Vis spectra are shown in Figs. S14 and S15. Also, the CCDC deposition numbers are CCDC-1994620 for 1 and CCDC-1994621 for 2. For ESI and crystallographic data in CIF or other electronic format see DOI:

Table of Contents

Table S1 Selected bond distances (Å) and bond angles (°) for 1.	P-3
Table S2 Selected bond distances (Å) and bond angles (°) for 2.	P-4
Table S3 Non-covalent interactions in 1.	P-5
Table S4 Non-covalent interactions in 2.	P-7
Table S5 Cartesian coordinates of 1 used for theoretical calculations.	P-9
Table S6 Cartesian coordinates of 1 used for theoretical calculations.	P-11
Table S7 Energy levels (cm ⁻¹) of ligand field multiplets for 1 and 2	2 calculated by
CASSCF/NEVTP2 in zero magnetic field.	P-13
Table S8 Individual contributions to D-tensor for 1 and 2 calculated by CASSCF/	/NEVTP2.
	P16
Figs. S1 and S2: Observed and simulated PXRD for 1 and 2.	P-18
Figs. S3 and S4: Packing views for 1 and 2.	P-19
Fig. S5 Magnetization $(M_{mol}/N_A\mu_B)$ vs. B for 1 (A) and 2 (B), including the c	orresponding fits
(solid line).	P-20
Fig. S6 The results of ac measurements for complex 2 , χ' vs. <i>f</i> plot (A), χ'' vs.	f plot (B), χ"
vs. <i>T</i> plot (C) showing no distinct maxima.	P-21
Fig. S7 Dot charts showing dependences of magnetization $[M_{mol}/N_A\mu_B]$ vs. magn	netic field [T]
for 1 (A) and 2 (B) at different temperatures, including the corresponding fits (so	lid lines).
	P-22
Fig. S8 The results of ac measurements for complex 2, χ' vs. f plot (A), χ'' vs.	f plot (B), χ ^ι
vs. <i>T</i> plot (C) showing no distinct maxima.	P-23
Fig. S9 ESI-MS of L^1 ligand in MeOH	P-24
Fig. S10 ESI-MS of L ² ligand in MeOH	P-25

Fig. S11 ¹³ C NMR spectrum of L ² ligand in DMSO-d ₆	P-26
Fig. S12 UV-Vis spectrum of complex 1 in CH ₃ CN	P-27
Fig. S13 UV-Vis spectrum of complex 2 in CH ₃ CN	P-28
Fig. S14 Solid state spectrum of 1 and its deconvolution analysis.	P-29
Fig. S15 Solid state spectrum of 2 and its deconvolution analysis.	P-30

Col-N7 2.029(5) Co1-N1 2.052(5) 2.060(5) 2.077(5) Col-N6 Co1-N4 Co1-N3 2.217(4) S1-C23 1.636(6) N7-C23 N7-Co1-N1 106.94(19) 1.146(7) N7-Co1-N6 N1-Co1-N6 104.26(19) 92.96(19) N7-Co1-N4 90.14(19) N1-Co1-N4 100.74(19) N7-Co1-N3 158.76(19) N6-Co1-N4 152.69(19) N1-Co1-N3 N6-Co1-N3 88.80(17) 93.08(18) 170.2(5) N4-Co1-N3 78.97(19) C23-N7-Co1 N7-C23-S1 179.0(6)

Table S1 Selected bond distances (Å) and bond angles (°) of 1.

 Table S2 Selected bond distances (Å) and bond angles (°) of 2.

Co1-N6	2.022(4)	Co1-N7	2.037(4)
Co1-N4	2.044(4)	Co1-N1	2.060(4)
Co1-N2	2.311(3)	Co2-N12	2.012(4)
Co2-N13	2.026(3)	Co2-N10	2.040(4)
Co2-N9	2.061(3)	Co2-N8	2.289(4)
S1-C24	1.630(4)	C24-N7	1.163(5)
S2-C25	1.633(7)	C25-N12	1.175(8)
N6-Co1-N7	99.57(14)	N6-Co1-N4	111.16(14)
N7-Co1-N4	94.34(14)	N6-Co1-N1	127.74(14)
N7-Co1-N1	95.94(14)	N4-Co1-N1	117.01(14)
N6-Co1-N2	87.43(13)	N7-Co1-N2	172.49(13)
N4-Co1-N2	85.57(13)	N1-Co1-N2	77.50(13)
N12-Co2-N13	98.92(15)	N12-Co2-N10	94.74(16)
N13-Co2-N10	113.34(14)	N12-Co2-N9	95.23(16)
N13-Co2-N9	128.07(14)	N10-Co2-N9	114.89(14)
N12-Co2-N8	172.14(14)	N13-Co2-N8	87.53(13)
N10-Co2-N8	86.74(13)	N9-Co2-N8	77.18(13)
C24-N7-Co1	168.6(3)	C25-N12-Co2	161.1(5)
N12-C25-S2	175.7(6)	N7-C24-S1	179.3(4)

 Table S3: Non-covalent interactions in 1.

5-Membered Ring (1) N1 --> N2 --> C1 --> C2 --> C5 5-Membered Ring (2) N5 --> N6 --> C12 --> C11 --> C10

6-Membered Ring (3) N4 --> C16 --> C17 --> C18 --> C19 --> C20

Analysis of Ring...Ring Interactions (Cg-Cg < 6 Å, Alpha < 20 °, Beta < 60 °)

- Cg(I),Cg(J) = Center of gravity of ring with plane number I (resp. J) (= ring number in () above)

- Alpha = Dihedral angle between planes I and J ($^{\circ}$)

- Beta = Angle Cg(I) --> Cg(J) or Cg(I) --> Me vector and normal to plane I ($^{\circ}$)

- Gamma = Angle Cg(I) --> Cg(J) vector and normal to plane J (°)

- Cg-Cg = Distance between ring centroids (Å)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Å)

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Å)

Cg(I)	Cg(J)[ARU(J)]	Cg-Cg	Alpha	Beta	Gamma	Cgl_Perp	CgJ_Perp
Cg1	Cg2 [1555]	4.739(3)	67.7(3)	35.7	56.7	2.598(2)	3.847(2)
Cg2	Cg1 [1555]	4.739(3)	67.7(3)	56.7	35.7	3.847(2)	2.598(2)
Cg3	Cg1 [1555]	5.297(3)	62.9(3)	49.5	68.3	1.955(2)	3.443(2)
Cg3	Cg3 [4564]	5.669(3)	23.0(3)	45.4	36.2	4.573(2)	3.981(2)
Cg3	Cg3 [4565]	5.670(3)	23.0(3)	36.2	45.4	3.982(2)	4.574(2)

Translation of ARU-Code to CIF and Equivalent Position Code

[1555] = X,Y,Z

[4564] = X,3/2-Y,-1/2+Z

[4565] = X,3/2-Y,1/2+Z

Analysis of X-H...Cg(π -Ring) Interactions (H..Cg < 3 Å Gamma < 40 °)

- Cg(J) = Center of gravity of ring J (Plane number above)

- H-Perp = Perpendicular distance of H to ring plane J

- Gamma = Angle between Cg-H vector and ring J normal

- X-H..Cg = X-H-Cg angle (degrees)

- X..Cg = Distance of X to Cg (Angstrom)

- X-H, Pi = Angle of the X-H bond with the Pi-plane (Perp. = 90 °, Par. = 0 $^{\circ}$)

XH(I)	Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg	X-H,Pi
C14-H14A	Cg1 [1555]	2.87	2.67	21.25	159	3.797(7)	66

Translation of ARU-Code to CIF and Equivalent Position Code [1555] = X,Y,Z

Analysis of Y-X...Cg(π -Ring) Interactions (X..Cg < 4 Å Gamma < 30 °)

YX(I)	Cg(J)[ARU(J)]	XCg	X-Perp	Gamma	Y-X Cg	YCg	Y-X,Pi			
C23-S1	Cg2 [1655]	3.511(3)	-3.410	13.76	144.6(2)	4.937(6)	52.28			
Cl1-01	Cg1 [3565]	3.512(12)	-3.096	28.16	148.2(7)	4.779(3)	34.98			
Cl1-09	Cg3 [2645]	3.76(3)	3.380	25.88	125.5(14)	4.667(3)	22.33			
Cl1-010	Cg1 [3565]	3.69(3)	-3.220	29.00	138.9(18)	4.779(3)	30.82			
Translation of ARU-Code to CIF and Equivalent Position Code										
[1655] = 1+X,Y,Z										
[3565] = -X	[3565] = -X 1-Y -7									

[2645] = 1-X,-1/2+Y,1/2-Z

The Co(I)	refer to the	ring	Centre-of-Grav	vity numbers	given	in	Λ
		: I III g '	Centre-or-Gra	vity numbers	given	111	U.

Cg(I)	x	У	Z
Cg1	0.2287(3)	0.58066(8)	-0.0173(2)
Cg2	0.2398(3)	0.56339(8)	0.4134(2)
Cg3	0.5267(2)	0.72563(8)	0.1123(2)

Analysis of Potential Hydrogen Bonds and Schemes

	<u>, , , , , , , , , , , , , , , , , , , </u>	,	, , , ,	, ,	,	1
Nr	DH	Accept	[ARU]	DH	D-HA	AHA*
1	07H7	02	[1555]	2.963(14)	154	
2	07H7	08	[1555]	3.15(3)	149	43'
3	07H7	011	[1555]	3.12(2)	134"	21"
4	C7H7A	S1	[1455]	3.689(6)	159	
5	C7H7B	011	[3565]	3.37(2)	161	
6	C8H8A	05	[4565]	3.143(7)	123	
7	C8H8B	08	[3566]	3.47(2)	160	
8	C13H13A	01	[3566]	3.337(12)	134	
9	C14H14B	07	[1555]	3.385(8)	162	
10	C15H15B	05	[1555]	2.872(7)	102	
11	C15H15B	04	[2555]	3.533(10)	166'	85'
12	C19H19	03	[3665]	3.441(10)	174	
13	C19H19	011	[3665]	3.17(2)	123'	53'
14	C21H21A	04	[2655]	3.311(11)	157	
15	C21H21A	08	[2655]	3.05(2)	130'	34'
16	C21H21C	09	[3665]	3.25(3)	131	
17	C22H22C	02	[2655]	3.388(12)	163	
Trancla	tion of ADLL C			+ Desition Cod	~	

Translation of ARU-Code to CIF and Equivalent Position Code

[3565] = -X,1-Y,-Z [4565] = X,3/2-Y,1/2+Z [1455] = -1+X,Y,Z [3566] = -X,1-Y,1-Z [2655] = 1-X,1/2+Y,1/2-Z [3665] = 1-X,1-Y,-Z [2555] = -X,1/2+Y,1/2-Z
 Table S4: Non-covalent interactions in 2.

5-Membered Ring (1) N10 --> N11 --> C37 --> C36 --> C39 5-Membered Ring (2) N13 --> N14 --> C43 --> C45 --> C46 6-Membered Ring (3) N9 --> C28 --> C26 --> C29 --> C31 --> C33

5-Membered Ring (4) N3 --> N4 --> C15 --> C13 --> C12

5-Membered Ring (5) N5 --> N6 --> C20 --> C22 --> C19

6-Membered Ring (6) N1 --> C1 --> C4 --> C3 --> C8 --> C9

Analysis of Ring-Ring Interactions (Cg-Cg < 6 Å, Alpha < 20 °, Beta < 60 °)

- Cg(I), Cg(J) = Center of gravity of ring with plane number I (resp. J) (= ring number in () above)

- Alpha = Dihedral Angle between Planes I and J (°)

- Beta = Angle Cg(I) --> Cg(J) or Cg(I)-->Me vector and normal to plane I (°)

- Gamma = Angle Cg(I) --> Cg(J) vector and normal to plane J (°)

- Cg-Cg = Distance between ring Centroids (Å)

- CgI_Perp = Perpendicular distance of Cg(I) on ring J (Å)

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Å)

Cg(I)	Cg(J)	Cg-Cg	Alpha	Beta	Gamma	Cgl_Perp	CgJ_Perp
Cg1	Cg5 [2665]	5.429(3)	55.5(3)	13.8	65.5	2.2518(19)	5.2730(19)
Cg3	Cg1 [1555]	5.436(3)	86.7(2)	53.3	65.6	2.2445(18)	3.2456(18)
Cg3	Cg6 [1655]	5.456(3)	26.4(2)	33.9	53.0	3.2814(18)	4.5266(18)
Cg4	Cg2 [2666]	5.380(3)	54.4(3)	12.0	65.2	2.2561(19)	5.2620(19)
Cg6	Cg3 [1455]	5.456(3)	26.4(2)	53.0	33.9	4.5266(18)	3.2815(18)
Cg6	Cg4 [1555]	5.522(3)	89.0(2)	55.3	66.8	2.1792(18)	3.1413(18)

Translation of ARU-Code to CIF and Equivalent Position Code

[2665] = 1-X,1-Y,-Z [1555] = X,Y,Z [1655] = 1+X,Y,Z [2666] = 1-X,1-Y,1-Z [1455] = -1+X,Y,Z [1555] = X,Y,Z

Analysis of X-H...Cg(*π*-Ring) Interactions (H..Cg < 3.0 Å, Gamma < 40 °)

- Cg(J) = Center of gravity of ring J (Plane number above)

- H-Perp = Perpendicular distance of H to ring plane J

- Gamma = Angle between Cg-H vector and ring J normal

- X-H..Cg = X-H-Cg angle (°)

- X..Cg = Distance of X to Cg (Å)

- X-H, π = Angle of the X-H bond with the π -plane (Perp. = 90 °, Par. = 0 °)

XH(I)	Cg(J) [ARU(J)]	HCg	H-Perp	Gamma	X-HCg	XCg	Х-Н,Рі		
C23-H23A	Cg1 [2665]	2.75	-2.65	15.33	133	3.495(5)	53		
C35-H35B	Cg3 [1555]	2.98	-2.47	33.86	152	3.880(5)	30		
C44-H44A	Cg4 [2666]	2.80	2.60	21.61	131	3.520(5)	53		
Translation o	f ARU-Code to CIF and	Equivalent	t Position	Code					
[2665] = 1-X,1-Y,-Z									
[1555] = X,Y,Z									

[2666] = 1-X,1-Y,1-Z

Analysis of Y-X...Cg(*π*-**Ring) Interactions** (X..Cg < 4.0 Å - Gamma < 30.0 °)

YX(I)	Cg(J) [ARU(J)]	XCg	X-Perp	Gamma	Y-XCg	YCg	Y-X,Pi	
C24-S1	Cg2 [2666]	3.744(2)	3.669	11.47	80.06(18)	3.816(5)	0.88	
C25-S2	Cg5 [2665]	3.574(3)	-3.546	7.11	91.1(3)	3.958(7)	5.24	
C49-S3	Cg6 [1655]	3.712(5)	-3.595	14.41	103.3(5)	4.385(16)	24.13	
Cl1-02	Cg6 [1655]	3.913(5)	3.541	25.16	118.2(2)	4.757(2)	51.17	
Cl1-03	Cg1 [1565]	3.526(5)	3.249	22.85	139.3(2)	4.699(2)	66.26	
Cl2-05	Cg3 [1555]	3.922(5)	-3.450	28.41	120.3(2)	4.809(2)	57.05	
Cl2-08	Cg4 [1545]	3.463(4)	-3.256	19.89	145.9(2)	4.716(2)	70.09	
[2666] = 1	L-X,1-Y,1-Z				-			
[2665] = 1	L-X,1-Y,-Z							
[1655] = 1	L+X,Y,Z							
[1565] = >	<,1+Y,Z							
[1555] = >	[1555] = X,Y,Z							
[1545] = X,-1+Y,Z								
The Cg(I)	refer to the Ring Cen	tre-of-Grav	ity numbers	given in ()				

Cg(I)	х	у	Z
Cg1	0.71278(16)	0.08252(12)	0.18014(12)
Cg2	0.94498(16)	0.29634(12)	0.42166(12)
Cg3	0.49043(16)	0.34185(12)	0.26430(12)
Cg4	0.16866(16)	0.92528(12)	0.32348(12)
Cg5	0.26404(16)	0.70668(12)	0.08822(12)
Cg6	-0.21543(16)	0.66370(12)	0.23740(12)

Analysis of Potential Hydrogen Bonds and Schemes

(d(D...A) < R(D) + R(A) + 0.50 Å, d(H...A) < R(H) + R(A)-0.12 Å, D-H...A > 100.0 °)

DonorH	Acceptor	[ARU]	D - H	НА	DA	D - HA
C5H5A	010		0.98	2.41	2.862(6)	107
C6H6A	02	[1455]	0.98	2.59	3.415(8)	142
С9Н9	N7		0.95	2.56	3.144(6)	120
C11H11B	N1		0.99	2.58	3.323(6)	132
C14H14C	01	[1455]	0.98	2.53	3.478(6)	162
C28H28	N12		0.95	2.53	3.105(6)	119
C30H30A	05	[1555]	0.98	2.53	3.442(7)	155
C32H32B	09		0.98	2.56	2.889(6)	100
C35H35B	N9		0.99	2.54	3.279(6)	131
C38H38C	07	[1555]	0.98	2.44	3.382(6)	162

No standard hydrogen bonds found

Translation of ARU-Code to CIF and Equivalent Position Code Translation of ARU-Code [1455] = -1+X,Y,Z

PLATON Reference: Spek, A.L. (2015) Acta Cryst. C71, 9-18

<u>Co</u>	3.31100000	<u>19.09500000</u>	2.33000000
<u>S</u>	7.45500000	<u>16.85700000</u>	<u>3.22500000</u>
<u>0</u>	3.06900000	24.34600000	<u>1.73400000</u>
<u>0</u>	5.19500000	24.52800000	0.10400000
N	2.59000000	18.44800000	0.52100000
N	1.24100000	<u>18.30700000</u>	0.34100000
N	<u>1.62800000</u>	20.50700000	2.63100000
N	4.19500000	20.89100000	<u>1.77500000</u>
N	<u>1.67400000</u>	<u>18.23800000</u>	4.75800000
<u>N</u>	<u>2.43900000</u>	<u>17.83200000</u>	<u>3.70500000</u>
N	5.14500000	<u>18.26000000</u>	2.56900000
<u>C</u>	<u>0.95100000</u>	<u>17.33100000</u>	<u>-0.54200000</u>
<u>C</u>	2.16800000	<u>16.82500000</u>	<u>-0.95900000</u>
H	2.30300000	<u>16.11400000</u>	<u>-1.57500000</u>
<u>C</u>	-0.43600000	<u>16.95300000</u>	-0.91400000
H	-0.96300000	<u>16.80600000</u>	-0.10100000
<u>H</u>	<u>-0.42000000</u>	<u>16.13200000</u>	<u>-1.44700000</u>
<u>H</u>	<u>-0.84000000</u>	<u>17.67600000</u>	<u>-1.43900000</u>
<u>C</u>	<u>4.63700000</u>	<u>17.41300000</u>	<u>-0.44800000</u>
<u>H</u>	<u>5.07600000</u>	<u>18.20200000</u>	<u>-0.06600000</u>
<u>H</u>	<u>4.86900000</u>	<u>17.33900000</u>	<u>-1.39700000</u>
<u>H</u>	<u>4.93900000</u>	<u>16.61000000</u>	<u>0.02600000</u>
<u>C</u>	<u>3.15400000</u>	<u>17.55000000</u>	<u>-0.30500000</u>
<u>C</u>	<u>0.85100000</u>	<u>20.56400000</u>	<u>1.36000000</u>
<u>H</u>	<u>1.44000000</u>	<u>20.90500000</u>	<u>0.64200000</u>
<u>H</u>	<u>0.10800000</u>	<u>21.20700000</u>	<u>1.47100000</u>
<u>C</u>	<u>0.27800000</u>	<u>19.23800000</u>	<u>0.92000000</u>
<u>H</u>	<u>-0.14600000</u>	<u>18.80400000</u>	<u>1.70300000</u>
<u>H</u>	<u>-0.43300000</u>	<u>19.40900000</u>	<u>0.25400000</u>
<u>C</u>	<u>1.41900000</u>	<u>19.64800000</u>	<u>4.96600000</u>
<u>H</u>	<u>2.27800000</u>	20.11900000	<u>5.11100000</u>
<u>H</u>	<u>0.86700000</u>	<u>19.76500000</u>	<u>5.78000000</u>
<u>C</u>	<u>0.70200000</u>	20.26400000	<u>3.77900000</u>
<u>H</u>	<u>-0.02600000</u>	<u>19.65900000</u>	<u>3.48800000</u>
<u>H</u>	0.29200000	21.12200000	<u>4.05500000</u>
<u>C</u>	<u>1.21800000</u>	<u>17.19200000</u>	<u>5.47000000</u>
<u>C</u>	<u>1.72700000</u>	<u>16.07400000</u>	<u>4.88200000</u>
<u>H</u>	<u>1.60000000</u>	<u>15.17800000</u>	<u>5.16900000</u>
<u>C</u>	<u>2.46700000</u>	<u>16.49300000</u>	<u>3.77900000</u>
<u>C</u>	0.32200000	<u>17.34600000</u>	<u>6.64800000</u>
<u>H</u>	0.74500000	17.93700000	7.3050000
<u>H</u>	0.16100000	<u>16.46800000</u>	7.05300000
<u>H</u>	<u>-0.53100000</u>	17.73400000	<u>6.36100000</u>
<u>C</u>	<u>3.18000000</u>	<u>15.64000000</u>	<u>2.78700000</u>
<u>H</u>	3.00600000	15.97500000	<u>1.88300000</u>
<u>H</u>	<u>2.85800000</u>	<u>14.71700000</u>	<u>2.86100000</u>
<u>H</u>	4.14200000	<u>15.66500000</u>	<u>2.96700000</u>

 Table S5 Cartesian coordinates of 1 used for theoretical calculations.

<u>C</u>	2.26100000	<u>21.83000000</u>	2.86000000
<u>H</u>	2.51700000	<u>21.91100000</u>	<u>3.81200000</u>
H	<u>1.60900000</u>	22.54600000	2.65600000
<u>C</u>	<u>3.48500000</u>	<u>22.01100000</u>	<u>1.99800000</u>
<u>C</u>	<u>3.83200000</u>	<u>23.24200000</u>	<u>1.48600000</u>
<u>C</u>	<u>4.95800000</u>	23.32400000	0.64200000
<u>C</u>	5.70600000	22.17800000	<u>0.44200000</u>
Ξ	6.49300000	22.20200000	-0.09000000
C	5.29600000	21.00800000	<u>1.02100000</u>
H	5.82500000	20.23300000	0.88000000
<u>C</u>	<u>6.37700000</u>	24.63400000	-0.72900000
H	<u>7.16700000</u>	24.38300000	<u>-0.20700000</u>
H	<u>6.47200000</u>	<u>25.55600000</u>	<u>-1.04500000</u>
H	<u>6.28800000</u>	<u>24.03100000</u>	<u>-1.49700000</u>
<u>C</u>	<u>3.41500000</u>	25.04600000	<u>2.93100000</u>
Η	<u>3.19900000</u>	24.49000000	<u>3.70800000</u>
H	2.90900000	25.88400000	2.97700000
H	4.37500000	25.24400000	2.92700000
C	6.09200000	17.67300000	2.83400000

Со	-1.60800000	11.25500000	3.62000000
С	-4.40800000	10.82700000	2.77400000
С	-3.84700000	11.56400000	1.60600000
Н	-3.51400000	10.91400000	0.93700000
Н	-4.56500000	12.09800000	1.18000000
С	-6.13700000	9.64600000	3.91300000
С	-5.74500000	10.40200000	2.82300000
С	-6.71000000	10.76000000	1.71700000
Н	-7.55000000	10.27200000	1.84300000
Н	-6.31800000	10.51900000	0.85100000
Н	-6.88700000	11.72400000	1.73700000
С	-8.35600000	10.09500000	4.57700000
Н	-8.04200000	10.34900000	5.47000000
Н	-9.23600000	9.67100000	4.64900000
Н	-8.42400000	10.89600000	4.01600000
С	-5.64300000	8.39600000	6.06800000
Н	-4.85800000	8.18100000	6.61400000
Н	-6.04300000	7.56800000	5.73100000
Н	-6.3000000	8.87600000	6.61700000
С	-5.22700000	9.26600000	4.90500000
С	-3.93500000	9.72600000	4.76000000
Н	-3.30000000	9.48700000	5.42600000
С	-3.26700000	13.76500000	2.52900000
Н	-4.10900000	13.97400000	2.05100000
Н	-2.61800000	14.48100000	2.31100000
С	-3.54000000	13.80200000	4.02200000
Н	-4.14200000	14.56000000	4.23300000
Н	-3.98900000	12.96500000	4.30000000
C	-1.88800000	14.93700000	5.58900000
C	-0.57200000	14.66900000	5.92500000
Н	-0.02100000	15.17400000	6.51200000
C	-2.75400000	16.07500000	5.97700000
Н	-2.88100000	16.66600000	5.20600000
H	-2.32900000	16.57600000	6.70500000
H	-3.62300000	15.73700000	6.27700000
С	-0.21500000	13.50900000	5.23300000
C	1.10400000	12.79700000	5.17500000
Н	1.08800000	12.02900000	5.78600000
Н	1.82000000	13.41100000	5.44400000
Н	1.26800000	12.48400000	4.26200000
C	-1.90600000	12.78700000	0.80900000
H	-2.28300000	13.58000000	0.35300000
H	-1.94200000	12.02600000	0.17700000
C	-0.45900000	13.06400000	1.17300000
H	-0.03500000	13.60000000	0.45800000
H	-0.42400000	13.58700000	2.01300000
C	1.26200000	11.30400000	0.56600000

 Table S6 Cartesian coordinates of 2 used for theoretical calculations.

С	0.51200000	9.74700000	1.98700000
С	0.24800000	8.46100000	2.70300000
Н	0.81900000	8.40700000	3.49800000
Н	0.44500000	7.70900000	2.10700000
Н	-0.69300000	8.42500000	2.97500000
С	1.44000000	9.99900000	0.98100000
Н	2.08000000	9.38500000	0.64100000
С	1.91500000	12.06100000	-0.52400000
Н	1.34700000	12.04000000	-1.32300000
Н	2.78300000	11.65500000	-0.73100000
Н	2.04900000	12.99100000	-0.24400000
С	-0.21500000	9.64700000	5.99300000
Ν	-3.51700000	10.49200000	3.74000000
Ν	-2.73500000	12.46800000	2.00800000
Ν	-2.27700000	13.95400000	4.75600000
Ν	-1.27100000	13.06000000	4.51700000
Ν	0.27500000	11.81300000	1.34700000
Ν	-0.20600000	10.86500000	2.21500000
Ν	-0.84900000	10.16800000	5.16700000
0	-7.43500000	9.18300000	3.99100000
S	0.68100000	8.90600000	7.13300000

Table S7 Energy levels (cm^{-1}) of ligand field multiplets for 1 and 2 calculated using CASSCF/NEVTP2 in zero magnetic field.

	1	2
0	0.0000	0.0000
1	0.0000	0.0000
2	85.6	14.5
3	85.6	14.5
4	1446.9	3519.1
5	1446.9	3519.1
6	1656.2	3667.5
7	1656.2	3667.5
8	2068.0	5019.7
9	2068.0	5019.7
10	2175.9	5146.6
11	2175.9	5146.6
12	5061.0	6143.3
13	5061.0	6143.3
14	5158.5	6288.6
15	5158.5	6288.6
16	9183.2	7083.0
17	9183.2	7083.0
18	9205.3	7187.9
19	9205.3	7187.9
20	9567.6	13136.3
21	9567.6	13136.3
22	10575.4	13204.7
23	10575.4	13204.7
24	10694.5	13413.3
25	10694.5	13413.3
26	14925.4	15215.1
27	14925.4	15215.1
28	16022.3	15475.8
29	16022.3	15475.8
30	16386.1	15507.8
31	16386.1	15507.8
32	16577.0	18521.9
33	16577.0	18521.9
34	16655.8	19261.5
35	16655.8	19261.5
36	19146.0	20369.6
37	19146.0	20369.6
38	19656.4	20441.8
39	19656.4	20441.8
40	20506.2	20650.8
41	20506.2	20650.8
42	20722.0	21561.2
43	20722.0	21561.2
44	20777.8	21904.2

45	20777.8	21904.2
46	20860.6	22380.3
47	20860.6	22380.3
48	21070.5	22872.6
49	21070.5	22872.6
50	21248.6	23021.8
51	21248.6	23021.8
52	22252.2	23163.5
53	22252.2	23163.5
54	23167.0	23363.5
55	23167.0	23363.5
56	23419.4	24201.8
57	23419.4	24201.8
58	24015.5	24258.3
59	24015.5	24258.3
60	25765.3	24442.4
61	25765.3	24442.4
62	25836.5	25526.1
63	25836.5	25526.1
64	27332.3	27331.0
65	27332.3	27331.0
66	28123.5	27822.1
67	28123.5	27822.1
68	28632.9	29385.0
69	28632.9	29385.0
70	29383.7	30577.9
71	29383.7	30577.9
72	30551.3	30939.5
73	30551.3	30939.5
74	31157.3	31957.0
75	31157.3	31957.0
76	32047.2	32429.4
77	32047.2	32429.4
78	32749.8	32641.8
79	32749.8	32641.8
80	33102.7	32987.0
81	33102.7	32987.0
82	33657.1	33142.6
83	33657.1	33142.6
84	34351.9	33601.6
85	34351.9	33601.6
86	34758.2	34565.1
87	34758.2	34565.1
88	35150.6	35153.8
89	35150.6	35153.8
90	36221.6	35527.3
91	36221.6	35527.3
92	36640.1	37447.1
93	36640.1	37447.1

94	37309.1	38121.7
95	37309.1	38121.7
96	41535.3	42422.2
97	41535.3	42422.2
98	43019.5	42733.0
99	43019.5	42733.0
100	43198.8	43123.1
101	43198.8	43123.1
102	44862.0	44360.0
103	44862.0	44360.0
104	45114.3	44983.0
105	45114.3	44983.0
106	45575.7	45210.7
107	45575.7	45210.7
108	45657.8	45553.3
109	45657.8	45553.3
110	62233.7	63746.5
111	62233.7	63746.5
112	63671.2	64102.9
113	63671.2	64102.9
114	66522.7	65137.5
115	66522.7	65137.5
116	66747.9	66378.1
117	66747.9	66378.1
118	68065.9	67141.0
119	68065.9	67141.0

1				2			
Multiplicity	Root	D	E	Multiplicity	Root	D	E
4	0	0.000	0.000	4	0	0.000	0.000
4	1	-20.124	-6.991	4	1	5.940	-7.511
4	2	-12.000	-7.987	4	2	-8.983	-0.382
4	3	-10.689	1.566	4	3	-10.466	-0.451
4	4	5.504	2.057	4	4	8.477	5.777
4	5	-0.424	-0.132	4	5	-0.602	-0.094
4	6	0.034	0.079	4	6	0.156	0.057
4	7	0.118	-0.038	4	7	-0.002	0.000
4	8	-0.034	0.001	4	8	0.073	-0.001
4	9	-0.096	-0.009	4	9	-0.097	0.002
2	0	-1.463	1.568	2	0	-0.629	0.194
2	1	-0.157	0.015	2	1	0.560	-0.002
2	2	-0.942	0.166	2	2	-0.686	0.373
2	3	-0.204	-0.379	2	3	0.005	0.001
2	4	0.552	0.050	2	4	0.092	0.041
2	5	1.957	-0.009	2	5	-0.532	0.644
2	6	0.499	-0.074	2	6	-1.430	1.620
2	7	-1.300	1.396	2	7	3.052	0.134
2	8	-1.929	-1.701	2	8	-2.557	-2.267
2	9	0.169	-0.055	2	9	-0.085	0.065
2	10	0.010	-0.008	2	10	0.138	0.007
2	11	0.156	0.007	2	11	0.026	0.000
2	12	0.188	-0.004	2	12	-0.141	0.149
2	13	-0.037	0.078	2	13	0.028	0.002
2	14	0.213	-0.001	2	14	0.487	0.021
2	15	0.107	-0.046	2	15	-0.174	-0.002
2	16	-0.158	0.143	2	16	-0.032	-0.044
2	17	-0.292	-0.169	2	17	0.368	0.006
2	18	0.200	-0.004	2	18	-0.067	0.076
2	19	-0.085	0.070	2	19	0.041	-0.003
2	20	-0.577	0.118	2	20	-0.227	-0.137
2	21	0.054	0.054	2	21	-0.092	-0.079
2	22	0.098	0.001	2	22	-0.034	-0.162
2	23	-0.492	-0.208	2	23	-0.220	0.051
2	24	0.148	-0.035	2	24	-0.067	0.085
2	25	-0.059	-0.033	2	25	0.316	0.031
2	26	-0.029	0.077	2	26	0.033	0.007
2	27	0.103	0.018	2	27	-0.011	-0.015
2	28	0.271	-0.048	2	28	0.245	0.001
2	29	-0.051	0.043	2	29	-0.114	-0.037
2	30	-0.098	0.086	2	30	0.089	0.004
2	31	-0.023	-0.028	2	31	-0.080	0.006
2	32	-0.001	-0.001	2	32	0.006	-0.005
2	33	0.126	0.008	2	33	-0.001	-0.000

Table S8. Individual contributions to *D*-tensor for 1 and 2 calculated usingCASSCF/NEVTP2.

2	34	-0.024	0.008	2	34	0.001	-0.000
2	35	-0.015	-0.023	2	35	-0.036	0.011
2	36	-0.000	0.000	2	36	-0.002	0.002
2	37	-0.000	-0.002	2	37	-0.004	-0.003
2	38	-0.019	0.019	2	38	0.003	-0.001
2	39	-0.015	0.009	2	39	-0.000	0.007

Fig. S1 Comparison of experimental and simulated XRPD spectra of 1.

Fig. S2 Comparison of experimental and simulated XRPD spectra of 2.

Fig. S3 Packing view of 1.

Fig. S4 Packing view of 2.

Fig. S5 The Curie-Weiss fitting (red line) of the magnetic data (blue circles) for 1 ($1/\chi$ vs. *T* plot) together with the calculated values of the *C*, θ and *zJ* parameters.

Fig. S6 The Curie-Weiss fitting (red line) of the magnetic data (blue circles) for 2 ($1/\chi$ vs. *T* plot) together with the calculated values of the *C*, θ and *zJ* parameters.

•

Fig. S7 Dot charts showing dependences of magnetization $[M_{mol}/N_A\mu_B]$ vs. magnetic field [T] for **1** (**A**) and **2** (**B**) at different temperatures, including the corresponding fits (full lines).

Fig. S8 The results of ac measurements for complex 2, χ' vs. f plot (A), χ'' vs. f plot (B), χ'' vs. T plot (C) showing no distinct maxima.

Fig. S9 ESI-MS of L^1 ligand in MeOH

Fig. S10 ESI-MS of L² ligand in MeOH

Fig. S11 ¹³C NMR spectrum of L^2 ligand in DMSO- d_6

Fig. S12 UV-Vis. spectrum of complex 1 in CH₃CN.

0.00529/ 5ml CH3 (N

Fig. S13 UV-Vis. spectrum of complex 2 in CH₃CN.

Fig. S14 Solid state spectrum of 1 and its deconvolution analysis.

Fig. S15 Solid state spectrum of 2 and its deconvolution analysis.