Supporting Information

Cyclometalated Ir(III)-NHC complex as recyclable catalyst for acceptorless dehydrogenation of alcohols to carboxylic acids

Dhrubajit Borah,^{a,b} Biswajit Saha,^{c,d} Bipul Sarma,^e Pankaj Das^{*a} ^a Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, India, 786004. ^b Department of Chemistry, N. N. Saikia College, Titabar, Assam, India, 785630. ^c Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006 Assam, India ^d Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat 785006, India ^e Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India, 784028

Table of Contents

	Page No
Scheme 1.Proposed reaction mechanism	S3
Figure S1-S2: ¹ H & ¹³ C NMR of Ligand Precursor L ₁ in CD ₃ OD	S4–S5
Figure S3: HRMS of Ligand Precursor L ₁	S6
Figure S4–S6: ¹ H, ¹³ C & ¹⁹ F NMR of Complex 1a in CDCl ₃	S7–S9
Figure S7: HRMS of Complex 1a	S10
Figure S8–S10: ¹ H, ¹³ C & ¹⁹ F NMR of Ligand Precursor L ₂ in DMSO–d6	S11–S13
Figure S11: HRMS of Ligand Precursor L ₂	S14
Figure S12–S14. ¹ H, ¹³ C & ¹⁹ F NMR of Complex 1b in CDCl ₃	S15-S17
Figure S15. HRMS of Complex 1b	S18
Figure S16-S17 ¹ H & ¹³ C NMR of Ligand Precursor L ₃ in CD ₃ OD	S19-S20
Figure S18- LC-MS Spectra of Ligand L ₃	S21
Figure S19-S20- ¹ H & ¹³ C NMR of Complex $1c$ in CDCl ₃	S22-S23
Figure S21- HRMS of Complex 1c	S24
Figure S22 - ¹ H NMR of in situ Ir-H from complex 1a at 50°C	
in toluene d8 S25	
Figure S23 ¹ H NMR of in situ Ir-H from complex 1a at 120°C in toluene d8	S26
Figure S24- Time conversion graph	S27
Figure S25- HRMS spectrum of the reaction mixture 1b and KOH (Stability test)) S28
Figure S26–S61. ¹ H & ¹³ C NMR of Acids.	S29-S65
Figure S62. ¹ H NMR Spectrum of reaction products (dehydrogenation of	
benzaldehyde) in CD ₃ OD	S66
Figure S63. ¹ H NMR of reaction products (dehydrogenation of benzyl alcoho catalysed by $[Ir(Cp^*)Cl_2]$	l) in CD ₃ OD S67
Figure S64. ESI-MS spectrum of the catalytic mixture	S67
Figure S65. Reusability of catalyst 1a for dehydrogenation reactions.	S67

1. Proposed reaction mechanism

The first step of the reaction would involve generation of an alkoxy-iridium species I by the reaction of complex **1a** with benzyl alcohol in presence of base KOH. Notably, formation of similar iridium-alkoxide species was also observed by Williams et. al.¹ Thereafter, the alkoxy-iridium species I would undergo a β - hydrogen elimination leads to the formation of hydrido-iridium species II with concomitant release of an aldehyde molecule. Next, the hydrido-intermediate II would possibly react with an aldehyde and water release a hydrogen molecule and generate intermediate III (through intermediate A) which subsequently would release another molecule of H₂ to give intermediate IV. The potassium salt of the acid would finally be produced by the reaction of IV with benzyl alcohol and KOH and thus the cycle continues. The existence of possible species I and IV was evidenced by the in situ ESI/MS spectra of the catalytic system with m/z 716.67 and 730.42 (See supporting information Fig S64) respectively and hydrido intermediate I was detected through *in situ* ¹H NMR spectroscopy. Although, the existence of the intermediary species III could not be traced, literature evidence suggests this is the most likely species involved in the process.^{2,3}

References

- 1. V. Cherepakhin, T. J. Williams, ACS Catal., 2018, 8, 3754–3763.
- 2. D. Gong, B. Hu and D. Chen, *Dalton Trans.*, 2019, 48, 8826.

S68

3. A. Sarbajna, I. Dutta, P. Daw, S. Dinda, W. S. M. Rahaman, A. Sarkar, J. K. Bera, *ACS Catal.*, 2017, 7, 4, 2786–2790.

Figure S1. ¹H NMR of Ligand Precursor L₁ in CD₃OD

Figure S2. ¹³C NMR of Ligand Precursor L₁ in CD₃OD

Figure S3. HRMS of Ligand Precursor L_1

Figure S5. ¹³C NMR of Complex **1a** in CDCl₃

Figure S6. ¹⁹ F NMR of Complex **1a** in CDCl₃

Figure S7. HRMS of Complex 1a

Figure S8. 1 H NMR of Ligand Precursor L₂ in DMSO–d6

Figure S9. ^{13}C NMR of Ligand Precursor L2 in DMSO–d6

Figure S10. ^{19}F NMR of Ligand Precursor L_2 in DMSO–d6

Figure S11. HRMS of Ligand Precursor L₂

Figure S12. ¹H NMR of Complex **1b** in CDCl₃

Figure S13. 13 C NMR of Complex **1b** in CDCl₃

Figure S14. ¹⁹F NMR of Complex **1b** in CDCl₃

Figure S15. HRMS Spectrum of Complex 1b

Figure S16. ¹H NMR of Ligand Precursor L₃ in CD₃OD-d3

Figure S17. ¹³C NMR of Ligand Precursor L₃ in CD₃OD–d3

Figure S18. LC-MS spectrum of Ligand Precursor L_3 .

Figure S19. ¹H NMR of Complex 1c in CDCl₃-d1

Figure S20. ¹³C NMR of Complex 1c in CDCl₃-d1

Figure S21. HR-MS spectra of Complex 1c.

Figure S22 : ¹H NMR spectrum of *in situ* generated Ir-H from the complex **1a** at 50°C in toluene d8. (heated for 10 minutes)

(The assigned signals are for the complex)

Figure S23 : ¹H NMR spectrum of *in situ* generated Ir-H from the complex **1a in toluened8**. (under standard reaction conditions, heated for 20 minutes)

(The assigned signals are for the complex)

Figure S24: Time course of the catalytic acceptorless dehydrogenation of benzyl alcohol.

Figure S25: HR-MS spectrum of the reaction mixture of 1b and KOH in toluene.

Condition : Complex **1b** (0.1 mmol), KOH (1.1 mmol), Toluene (10 mL), Temperature 120° C, Time 24 h

Figure S26. ¹H NMR of Acid 1 in DMSO– d_6 (Table 2, Entry 1)

Figure S27. 13 C NMR of Acid 1 in DMSO–d₆ (Table 2, Entry 1)

Figure S28. ¹H NMR of Acid **2** in DMSO–d₆ (Table 2, Entry 2)

Figure S29. ¹³C NMR of Acid **2** in DMSO–d₆ (Table 2, Entry 2)

Figure S30. ¹H NMR of Acid **3** in DMSO–d₆ (Table 2, Entry 3)

Figure S31. ¹³C NMR of Acid **3** in DMSO–d₆ (Table 2, Entry 3)

Figure S32. ¹H NMR of Acid 4 in DMSO-d₆ (Table 2, Entry 4)

Figure S33. ¹³C NMR of Acid 4 in DMSO–d₆ (Table 2, Entry 4)

Figure S34. ¹H NMR of Acid **5** in DMSO–d₆ (Table 2, Entry 5)

Figure S35. ¹³C NMR of Acid **5** in DMSO–d₆ (Table 2, Entry 5)

Figure S36. ¹H NMR of Acid **6** in DMSO–d₆ (Table 2, Entry 6)

Figure S37. ¹³C NMR of Acid **6** in DMSO–d₆ (Table 2, Entry 6)

Figure S38. ¹H NMR Spectra of Acid 7 in DMSO-d₆ (Table 2, Entry 7)

Figure S39. ¹³C NMR of Acid 7 in DMSO–d₆ (Table 2, Entry 7)

Figure S40. ¹H NMR of Acid 8 in DMSO-d₆ (Table 2, Entry 8)

Figure S41. ¹³C NMR of Acid **8** in DMSO–d₆ (Table 2, Entry 8)

Figure S42. ¹H NMR of Acid 9 in DMSO–d₆ (Table 2, Entry 9)

Figure S43. ¹³C NMR of Acid 9 in DMSO-d₆ (Table 2, Entry 9)

Figure S44. ¹H NMR of 4-Nitrobenzaldehyde (9a) in CDCl₃-d₁.

Figure S45. ¹³C NMR of of 4-Nitrobenzaldehyde (9a) in $CDCl_3-d_1$

Figure S46. ¹H NMR of Acid **10** in DMSO–d₆ (Table 2, Entry 10)

Figure S47. ¹³C NMR of Acid **10** in DMSO–d₆ (Table 2, Entry 10)

Figure S48. ¹H NMR of Acid **11** in DMSO–d₆ (Table 2, Entry 11)

Figure S49. ¹³C NMR of Acid **11** in DMSO–d₆ (Table 2, Entry 11)

Figure S50. ¹H NMR of Acid **12** in DMSO–d₆ (Table 2, Entry 12)

Figure S51. ¹³C NMR of Acid **12** in DMSO–d₆ (Table 2, Entry 12)

Figure S52. ¹H NMR of Acid **13** in DMSO–d₆ (Table 2, Entry 13)

Figure S53. ¹³C NMR of Acid **13** in DMSO–d₆ (Table 2, Entry 13)

Figure S54. ¹H NMR of Acid **14** in DMSO–d₆ (Table 2, Entry 14)

Figure S55. ¹³C NMR of Acid 14 in DMSO-d₆ (Table 2, Entry 14)

Figure S56. ¹H NMR of Acid salt **15** in DMSO–d₆ (Table 2, Entry 15)

Figure S57. ¹³C NMR of Acid salt **15** in DMSO–d₆ (Table 2, Entry 15)

Figure S58.¹H NMR of Acid Salt 16 in DMSO-d₆ (Table 2, Entry 16)

Figure S59. ¹³C NMR Spectra of Acid Salt **16**in DMSO–d₆ (Table 2, Entry 16)

Figure S60. ¹H NMR of Acid Salt 17 in DMSO–d₆ (Table 2, Entry 17)

Figure S61. ¹³C NMR of Acid Salt **17** in DMSO-d₆ (Table 2, Entry 17)

Figure S62. ¹H NMR of reaction products (dehydrogenation of benzaldehyde) in CD₃OD.

Figure S63. ¹H NMR of reaction products (dehydrogenation of benzyl alcohol) in CD₃OD catalysed by $[Ir(Cp^*)Cl_2]_2$.

Figure S64. ESI-MS spectrum of the catalytic reaction mixture. Catalyst 1a(0.1 mol%), KOH (1.1 mmol), benzyl alcohol (1 mmol), Toluene (10 mL), Refluxing conditions. The spectrum was recorded after 30 minutes of the reaction time.

Figure S65. Reusability of catalyst **1a** for dehydrogenation reactions of benzyl alcohol to benzoic acid under standard conditions.

Crystal Data	1a
Formula unit	C27H29BrFIrN2O
Formula wt.	688.63
Crystal system	monoclinic
T [K]	100
<i>a</i> [Å]	11.135(6)
<i>b</i> [Å]	16.187(9)
<i>c</i> [Å]	14.755(8)
α[°]	90
β [°]	107.165(8)
γ[°]	90
Volume [Å ³]	2541(2)
Space group	$P2_{1}/n$
Ζ	4
$D_{\rm calc} [{ m g \ cm^{-3}}]$	1.800
μ/mm^{-1}	6.856
Reflns. Collected	38113
Unique reflns.	6584
Observed reflns.	3549
$R_1 [I > 2\sigma(I)], wR_2$	0.0676, 0.1571
GOF	0.999
Instrument	Bruker APEX-II CCD
X-ray	MoK\a
CCDC Reference No.	1973746

Table S1: Crystallographic data

