Supporting information

Smart Dual T₁ MRI-Optical Imaging Agent Based on Rhodamine Appended Fe(III)-catecholate Complex

Duraiyarasu Maheshwaran,^a Thavasilingam Nagendraraj,^a T. Sekar Balaji,^b Ganesan Kumaresan,^b S Senthil Kumaran^c and Ramasamy Mayilmurugan^{*a}

^aBioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.

^bSchool of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.

^cDepartment of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India.

*E-mail: <u>mayilmurugan.chem@mkuniversity.ac.in</u>

Figure S2. ¹³C NMR of RhoCat in DMSO-d₆.

Figure S3. HR-ESI mass spectrum of RhoCat in methanol.

Figure S4. HR-ESI mass spectrum of Fe(RhoCat)₃ in methanol.

Figure S5. Analytical HPLC chromatogram of **Fe(RhoCat)**₃ where the absorption at 254 nm indicates the high purity of the sample.

Figure S6. DFT optimized structure of **Fe(RhoCat)**₃. Optimized at B3LYP/6-31G(d,p) basis set (for C, H, N and O), LANL2DZ for Fe in Gaussian 16 program.

Figure S7. UV/Vis spectrum of **Fe(RhoCat)**₃ at 40×10^{-6} M (a) 2×10^{-4} M (b) in phosphate buffer (pH 7.3) at 25 °C.

Figure S8. X-band EPR spectrum of $Fe(RhoCat)_3$ in a methanol/DMF mixture at temperature = 70 K, frequency = 9.5010 GHz, power = 0.7614 mW, modulation amplitude = 4 G, and modulation frequency = 100 kHz (a), Cyclic voltammogram of $Fe(RhoCat)_3$ (1 × 10⁻³ M) in acetonitrile at 25 °C (reference: saturated Ag/Ag⁺; supporting electrolyte: 0.1 M TBAP solution; scan rate: = 100 mV s⁻¹) (b).

Figure S9. Transverse relaxivity 1/T₂ versus [Fe(III)] plot of **Fe(RhoCat)**₃ at 1.41 T, 25 °C in HEPES buffer (pH 7.3) (red spheres) and 4 % BSA solution (blue spheres)

Figure S10. Transverse relaxivity 1/T₂ versus [Fe(III)] plot of **Fe(RhoCat)**₃ at 1.41 T, 37 °C in HEPES buffer (pH 7.3).

Figure S11. The change in r_2 -relaxivity of **Fe(RhoCat)**₃ versus pH variations (4–10), at 1.41 T, 25 °C and 0.425 mM of Fe(III) concentration.

Figure S12. The plot of longitudinal relaxivity $1/T_1$ versus [Fe(III)] for **Fe(RhoCat)**₃ at 1.41 T, 25 °C in HEPES buffer (pH 7.3) in NO.

Figure S13. The plot of transverse relaxivity $1/T_2$ versus [Fe(III)] for **Fe(RhoCat)**₃ at 1.41 T, 25 °C in HEPES buffer (pH 7.3) in NO.

Figure S14. The plot of longitudinal relaxivity $1/T_1$ versus [Fe(III)] for **Fe(RhoCat)**₃ in ROS (a) and RNS (b) (100 μ M) at 1.41 T, 25 °C in HEPES buffer (pH 7.3).

Figure S15. HR mass spectrum of Fe(NO-RhoCat)₃ species in buffer solution.

Figure S16. FTIR spectra of Fe(RhoCat)₃ before (a) and after (b) addition of NO.

Figure S17. UV-Vis spectral change for $Fe(RhoCat)_3$ (40 µM) for the pH variation in HEPES buffer solution (a). Inset: plot of absorbance at 567 nm vs pH. Photographs $Fe(RhoCat)_3$ showing colour change in different pH under visible light (top) and fluorescence changes under UV light (bottom) (b).

Figure S18. Fluorescence spectra of $Fe(RhoCat)_3$ (20 μ M) with 100 μ M anions and phosphates.

Figure S19. Fluorescence spectra of RhoCat (5 μ M) with NO.

Figure S20. Normalized absorbance and fluorescence spectra of Fe(RhoCat)₃ at pH 4.

Figure S21. Fluorescence spectral change for $Fe(RhoCat)_3$ (20 μ M) versus pH variation in HEPES buffer (a). Plot of the fluorescence intensity at 589 nm as a function of pH.

Table S1. Selected bond lengths and bond angles calculated from DFT optimized structure

Bond angles (Å)				Bond Angles (°)	
Fe-O ₁	2.080	Fe-O ₂	2.042	O ₁ -Fe-O ₂	79.1
Fe-O ₃	2.096	Fe-O ₄	2.039	O ₃ -Fe-O ₄	79.1
Fe-O ₅	2.080	Fe-O ₆	2.038	O ₅ -Fe-O ₆	79.0