Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Three-component D-A hybrid heterostructures with enhanced photochromic, photomodulated luminescent and selectively anion-sensing properties

Meng-Hua Li^a, Shu-Li Lv^a, Ming-Hua You^b and Mei-Jin Lin^{a, c,d*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China, 350116. E-mail: meijin lin@fzu.edu.cn.

^b College of Zhicheng, Fuzhou University, China, 350002.

^c College of Materials Science and Engineering, Fuzhou University, China, 350116

^d Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian, 350002, China

Table of Contents:

1.	The additional crystal figure for 1-D channel and electron transfer	S2
2.	Crystal data and structure refinement	S3
3.	Infrared spectral analysis	S4
4.	Thermo-gravimetric analysis (TG)	S5
5.	X-ray powder diffraction analysis	S 6
6.	Luminescence properties and sensing of $Cr_2O_7^{2-}$	S 7
7.	XPS for hybrid 1	S 8
8.	EDS analysis of hybrid 1	S10

1. The additional crystal figure for 1-D channel and electron transfer

Fig. S1. The 1-D channels for hybrid 1 view along *b*-axis.

Fig. S2. The electron transfer orientation diagrams of $[Co(CN)_6]^{3-}$ and Bcebpy ligands in hybrid 1.

2. Crystal data and structure refinement

Table S1: Crystal data and structure refinement for hybrids 1-3.

Identification code	1	2	3
Empirical formula	C ₂₀ H ₂₆ CoEuN ₈ O ₁₁	C ₂₀ H ₂₂ CoDyN ₈ O ₉	C ₂₀ H _{24.5} CoN ₈ O _{10.5} Sm
Formula weight	763.36	739.88	754.25
Temperature/K	293(2)	293(2)	296.15
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>C2/c</i>	C2/c	C2/c
a/Å	31.279(4)	31.279(5)	31.267(2)
b/Å	11.3928(6)	11.3714(10)	11.4024(6)
c/Å	21.323(3)	21.267(4)	21.1252(14)
α/°	90	90	90
β/°	130.59(2)	130.46(3)	130.659(2)
γ/°	90	90	90
Volume/Å ³	5770.4(18)	5756(2)	5713.4(6)
Z	8	8	8
$\rho_{calc} g/cm^3$	1.757	1.708	1.754
μ/mm^{-1}	2.796	3.211	2.682
F(000)	3024.0	2904.0	2988.0
Reflections collected	23184	22758	33182
Independent reflections	6562	5090	5042
Data/restraints/parameters	6562/0/387	5090/7/361	5042/2/395
Goodness-of-fit on F ²	1.085	1.049	1.043
Final R indexes	$R_1 = 0.0367,$	$R_1 = 0.0667,$	$R_1 = 0.0283,$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.0998$	$wR_2 = 0.1912$	$wR_2 = 0.0658$
Final R indexes [all data]	$R_1 = 0.0554,$	$R_1 = 0.0918,$	$R_1 = 0.0329,$
i mai it muckes [an uata]	$wR_2 = 0.1118$	$wR_2 = 0.2527$	$wR_2 = 0.0692$

3. Infrared spectral analysis

Figure S3. Infrared spectrum before and after soaking in $Cr_2O_7^{2-}$ for 24 h of 1.

4. Thermo-gravimetric analysis (TG)

Figure S4. The TG curve of 1 under N_2 atmosphere with a heating rate of 10 °C/min.

5. X-ray powder diffraction analysis

Figure S5. PXRD patterns of 1 after the irradiation and soaking in $Cr_2O_7^{2-}$ anion solution for 24 h.

6. Luminescence properties and sensing $Cr_2O_7^{2-}$

Figure S6. The luminescence emission of the original sample and the restored sample.

Figure S7. Luminescence decays of hybrids 1 under ambient conditions.

Figure S8. Comparison of the relative luminescence intensity of Cr_2O_7 ²⁻ in the presence of mixed anions for 1.

Figure S9. The Stern-Volmer plot of quenched by $Cr_2O_7^{2-}$ in CH₃OH. The red line corresponds to a linear fitting result.

Fig S10. The UV-vis absorption spectra of anions and the excitation spectrum of 1.

7. XPS for compound 1

Fig. S11 XPS core level spectra of O and N atoms in hybrid 1.

Fig. S12 XPS of hybrid 1.

Fig. S13 EDX analysis of hybrid 1.