Synthesis and antiproliferative activity of hindered, chiral 1,2-diaminodiamantane platinum(II) complexes

Vladyslav V. Bakhonsky^{a,b} Aleksander A. Pashenko,^{b,c} Jonathan Becker,^d Heike Hausmann,^a Huub J. M. De Groot,^c Herman S. Overkleeft,^c Andrey A. Fokin,^{*a,b} and Peter R. Schreiner^{*a}

^a Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany and Center for Materials Research (LaMa), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany

^b Department of Organic Chemistry, Kiev Polytechnic Institute, Pr. Pobedy 37, 03056 Kiev, Ukraine

^c Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300RA Leiden, The Netherlands

^d Institute of Inorganic and Analytical Chemistry, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Giessen, Germany

Supplementary information

Table of contents

Figure S1 ¹ H NMR spectra of (R, R)-1 and (S, S)-1	2
Figure S2 ¹³ C NMR spectra of (R, R)-1 and (S, S)-1	3
Figure S3 ¹⁹⁵ Pt NMR spectra of (R, R)-1 and (S, S)-1	4
Tables S1–S6 Crystallographic data for (S,S) -1,2-diaminodiamantane	5–10
Tables S7–S12 Crystallographic data for (S, S) - 1	11–27
References	27

Figure S1 ¹H NMR spectra of (R,R)-1 and (S,S)-1.

Figure S2 ¹³C NMR spectra of (R,R)-1 and (S,S)-1.

Figure S3 ¹⁹⁵Pt NMR spectra of (R,R)-1 and (S,S)-1.

Crystallographic data for (S,S)-1,2-diaminodiamantane

The unit cell of (S,S)-1,2-diaminodiamantane was determined using 9978 reflections and the structure was solved in the monoclinic space group P_{2_1} . The asymmetric unit contains the cation, two chloride anions and a methanol molecule. The absolute configuration of the structure could be successfully determined utilizing the anomalous dispersion effect and using the improved Flack method¹ with a Flack x of 0.004(4).

Table S1 Crystal data and structure refinement for (S,S)-1,2-diaminodiamantane.

CCDC No	1956841	
Empirical formula	C ₁₅ H ₂₈ Cl ₂ N ₂ O	
Formula weight	323.29	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 9.7449(3) Å	α= 90°.
	b = 8.4127(3) Å	β= 92.4679(15)°.
	c = 9.7717(3) Å	γ = 90°.
Volume	800.35(5) Å ³	
Z	2	
Density (calculated)	1.342 Mg/m ³	
Absorption coefficient	0.404 mm ⁻¹	
F(000)	348	
Crystal size	0.560 x 0.335 x 0.260 mm	1 ³
Theta range for data collection	2.890 to 49.117°.	
Index ranges	-20<=h<=20, -17<=k<=17	, -20<=l<=20
Reflections collected	272934	
Independent reflections	16136 [R(int) = 0.0480]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equiv	alents
Refinement method	Full-matrix least-squares	on <i>F</i> ²
Data / restraints / parameters	16136 / 8 / 203	
Goodness-of-fit on F ²	1.078	
Final R indices [I>2sigma(I)]	R1 = 0.0189, wR2 = 0.051	11
R indices (all data)	R1 = 0.0207, wR2 = 0.051	16
Absolute structure parameter	0.004(4)	
Largest diff. peak and hole	0.265 and -0.296 e.Å ⁻³	

Atom	X	у	Z	U(eq)
CI(1)	8282(1)	659(1)	5790(1)	12(1)
CI(2)	9303(1)	9342(1)	640(1)	13(1)
O(1)	9067(1)	5838(1)	6829(1)	20(1)
N(1)	8820(1)	3941(1)	4413(1)	10(1)
N(2)	9346(1)	5951(1)	1926(1)	9(1)
C(1)	7778(1)	4140(1)	3237(1)	8(1)
C(2)	7944(1)	5753(1)	2498(1)	7(1)
C(3)	6865(1)	5805(1)	1287(1)	10(1)
C(4)	5422(1)	5771(1)	1874(1)	12(1)
C(5)	5248(1)	4178(1)	2630(1)	11(1)
C(6)	6325(1)	4108(1)	3829(1)	9(1)
C(7)	7946(1)	2739(1)	2257(1)	11(1)
C(8)	6858(1)	2826(1)	1081(1)	13(1)
C(9)	7024(1)	4394(1)	306(1)	13(1)
C(10)	5423(1)	2767(1)	1663(1)	14(1)
C(11)	7734(1)	7149(1)	3481(1)	10(1)
C(12)	6288(1)	7077(1)	4041(1)	12(1)
C(13)	5225(1)	7180(1)	2841(1)	14(1)
C(14)	6095(1)	5502(1)	4801(1)	11(1)
C(15)	8186(1)	6835(1)	7579(1)	16(1)

Table S2 Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2 \ x \ 10^3)$ for (S,S)-1,2-diaminodiamantane. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S3 Bond lengths (\mathring{A}) and angles (°) for (S,S)-1,2-diaminodiamantane.

		N(2)-H(2A)	0.858(10)
O(1)-C(15)	1.4257(7)	N(2)-H(2B)	0.893(10)
O(1)-H(1)	0.864(13)	N(2)-H(2C)	0.847(10)
N(1)-C(1)	1.5098(5)	C(1)-C(7)	1.5312(5)
N(1)-H(1A)	0.963(10)	C(1)-C(2)	1.5487(5)
N(1)-H(1B)	0.908(11)	C(1)-C(6)	1.5519(5)
N(1)-H(1C)	0.835(10)	C(2)-C(11)	1.5363(6)
N(2)-C(2)	1.5078(5)	C(2)-C(3)	1.5489(5)

C(3)-C(9)	1.5377(7)	C(1)-N(1)-H(1B)	104.3(6)
C(3)-C(4)	1.5413(6)	H(1A)-N(1)-H(1B)	106.7(9)
C(3)-H(3)	1.0000	C(1)-N(1)-H(1C)	110.6(7)
C(4)-C(13)	1.5335(7)	H(1A)-N(1)-H(1C)	114.0(10)
C(4)-C(5)	1.5429(6)	H(1B)-N(1)-H(1C)	107.5(10)
C(4)-H(4)	1.0000	C(2)-N(2)-H(2A)	109.1(7)
C(5)-C(10)	1.5313(7)	C(2)-N(2)-H(2B)	111.4(7)
C(5)-C(6)	1.5404(6)	H(2A)-N(2)-H(2B)	103.6(10)
C(5)-H(5)	1.0000	C(2)-N(2)-H(2C)	115.0(7)
C(6)-C(14)	1.5324(6)	H(2A)-N(2)-H(2C)	105.3(10)
C(6)-H(6)	1.0000	H(2B)-N(2)-H(2C)	111.6(10)
C(7)-C(8)	1.5319(6)	N(1)-C(1)-C(7)	107.66(3)
C(7)-H(7A)	0.9900	N(1)-C(1)-C(2)	111.80(3)
C(7)-H(7AB)	0.9900	C(7)-C(1)-C(2)	111.51(3)
C(8)-C(10)	1.5328(7)	N(1)-C(1)-C(6)	108.00(3)
C(8)-C(9)	1.5329(7)	C(7)-C(1)-C(6)	110.10(3)
C(8)-H(8)	1.0000	C(2)-C(1)-C(6)	107.71(3)
C(9)-H(9A)	0.9900	N(2)-C(2)-C(11)	107.12(3)
C(9)-H(9AB)	0.9900	N(2)-C(2)-C(1)	112.59(3)
C(10)-H(10A)	0.9900	C(11)-C(2)-C(1)	111.04(3)
C(10)-H(10B)	0.9900	N(2)-C(2)-C(3)	108.04(3)
C(11)-C(12)	1.5349(6)	C(11)-C(2)-C(3)	110.59(3)
C(11)-H(11A)	0.9900	C(1)-C(2)-C(3)	107.45(3)
C(11)-H(11B)	0.9900	C(9)-C(3)-C(4)	109.58(4)
C(12)-C(13)	1.5334(7)	C(9)-C(3)-C(2)	111.79(3)
C(12)-C(14)	1.5343(6)	C(4)-C(3)-C(2)	108.38(3)
C(12)-H(12)	1.0000	C(9)-C(3)-H(3)	109.0
C(13)-H(13A)	0.9900	C(4)-C(3)-H(3)	109.0
C(13)-H(13B)	0.9900	C(2)-C(3)-H(3)	109.0
C(14)-H(14A)	0.9900	C(13)-C(4)-C(3)	110.82(4)
C(14)-H(14B)	0.9900	C(13)-C(4)-C(5)	110.92(4)
C(15)-H(15A)	0.9800	C(3)-C(4)-C(5)	108.39(3)
C(15)-H(15B)	0.9800	C(13)-C(4)-H(4)	108.9
C(15)-H(15C)	0.9800	C(3)-C(4)-H(4)	108.9
		C(5)-C(4)-H(4)	108.9
C(15)-O(1)-H(1)	108.1(9)	C(10)-C(5)-C(6)	110.42(4)
C(1)-N(1)-H(1A)	113.1(6)	C(10)-C(5)-C(4)	111.10(4)

C(6)-C(5)-C(4)	108.18(3)	H(10A)-C(10)-H(10B)	108.2
C(10)-C(5)-H(5)	109.0	C(12)-C(11)-C(2)	110.00(3)
C(6)-C(5)-H(5)	109.0	C(12)-C(11)-H(11A)	109.7
C(4)-C(5)-H(5)	109.0	C(2)-C(11)-H(11A)	109.7
C(14)-C(6)-C(5)	109.20(3)	C(12)-C(11)-H(11B)	109.7
C(14)-C(6)-C(1)	112.21(3)	C(2)-C(11)-H(11B)	109.7
C(5)-C(6)-C(1)	108.58(3)	H(11A)-C(11)-H(11B)	108.2
C(14)-C(6)-H(6)	108.9	C(13)-C(12)-C(14)	109.05(4)
C(5)-C(6)-H(6)	108.9	C(13)-C(12)-C(11)	108.98(4)
C(1)-C(6)-H(6)	108.9	C(14)-C(12)-C(11)	109.86(3)
C(1)-C(7)-C(8)	110.05(3)	C(13)-C(12)-H(12)	109.6
C(1)-C(7)-H(7A)	109.7	C(14)-C(12)-H(12)	109.6
C(8)-C(7)-H(7A)	109.7	C(11)-C(12)-H(12)	109.6
C(1)-C(7)-H(7AB)	109.7	C(12)-C(13)-C(4)	109.22(3)
C(8)-C(7)-H(7AB)	109.7	C(12)-C(13)-H(13A)	109.8
H(7A)-C(7)-H(7AB)	108.2	C(4)-C(13)-H(13A)	109.8
C(7)-C(8)-C(10)	109.47(4)	C(12)-C(13)-H(13B)	109.8
C(7)-C(8)-C(9)	109.11(4)	C(4)-C(13)-H(13B)	109.8
C(10)-C(8)-C(9)	109.15(4)	H(13A)-C(13)-H(13B)	108.3
C(7)-C(8)-H(8)	109.7	C(6)-C(14)-C(12)	109.68(3)
C(10)-C(8)-H(8)	109.7	C(6)-C(14)-H(14A)	109.7
C(9)-C(8)-H(8)	109.7	C(12)-C(14)-H(14A)	109.7
C(8)-C(9)-C(3)	109.93(3)	C(6)-C(14)-H(14B)	109.7
C(8)-C(9)-H(9A)	109.7	C(12)-C(14)-H(14B)	109.7
C(3)-C(9)-H(9A)	109.7	H(14A)-C(14)-H(14B)	108.2
C(8)-C(9)-H(9AB)	109.7	O(1)-C(15)-H(15A)	109.5
C(3)-C(9)-H(9AB)	109.7	O(1)-C(15)-H(15B)	109.5
H(9A)-C(9)-H(9AB)	108.2	H(15A)-C(15)-H(15B)	109.5
C(5)-C(10)-C(8)	109.37(4)	O(1)-C(15)-H(15C)	109.5
C(5)-C(10)-H(10A)	109.8	H(15A)-C(15)-H(15C)	109.5
C(8)-C(10)-H(10A)	109.8	H(15B)-C(15)-H(15C)	109.5
C(5)-C(10)-H(10B)	109.8		
C(8)-C(10)-H(10B)	109.8		

Atom	U 11	U_{22}	U ₃₃	U ₂₃	U 13	U 12	
CI(1)	9(1)	12(1)	16(1)	4(1)	-1(1)	0(1)	
CI(2)	16(1)	10(1)	12(1)	1(1)	3(1)	-2(1)	
O(1)	17(1)	30(1)	13(1)	-6(1)	-3(1)	7(1)	
N(1)	9(1)	11(1)	10(1)	2(1)	-2(1)	0(1)	
N(2)	8(1)	10(1)	9(1)	0(1)	1(1)	-1(1)	
C(1)	7(1)	8(1)	8(1)	1(1)	-1(1)	-1(1)	
C(2)	7(1)	8(1)	8(1)	1(1)	1(1)	0(1)	
C(3)	9(1)	13(1)	8(1)	2(1)	-1(1)	0(1)	
C(4)	8(1)	15(1)	12(1)	2(1)	-1(1)	1(1)	
C(5)	7(1)	14(1)	12(1)	0(1)	-1(1)	-2(1)	
C(6)	8(1)	10(1)	9(1)	1(1)	1(1)	-2(1)	
C(7)	11(1)	9(1)	12(1)	-2(1)	0(1)	0(1)	
C(8)	12(1)	14(1)	12(1)	-4(1)	-1(1)	-3(1)	
C(9)	12(1)	18(1)	8(1)	-1(1)	-1(1)	-2(1)	
C(10)	11(1)	16(1)	15(1)	-3(1)	-1(1)	-5(1)	
C(11)	10(1)	8(1)	12(1)	-1(1)	2(1)	0(1)	
C(12)	10(1)	11(1)	14(1)	-1(1)	3(1)	1(1)	
C(13)	10(1)	14(1)	18(1)	2(1)	2(1)	4(1)	
C(14)	10(1)	14(1)	10(1)	-1(1)	3(1)	-1(1)	
C(15)	17(1)	16(1)	14(1)	-1(1)	1(1)	1(1)	

Table S4 Anisotropic displacement parameters $(\mathring{A}^2 \times 10^3)$ for (S,S)-1,2-diaminodiamantane. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$.

Table S5 Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for (*S*,*S*)-1,2-diaminodiamantane.

Atom	x	у	Z	U(eq)
H(1)	9565(13)	5290(18)	7410(14)	30
H(1A)	8656(11)	4632(13)	5174(10)	12
H(1B)	8687(11)	2931(13)	4710(10)	12
H(1C)	9617(10)	3992(14)	4135(10)	12
H(2A)	9402(11)	6877(13)	1565(10)	11
H(2B)	10004(10)	5961(14)	2592(10)	11

H(2C)	9530(10)	5305(13)	1295(10)	11
H(3)	6978	6818	769	12
H(4)	4720	5836	1100	14
H(5)	4309	4137	3003	13
H(6)	6210	3089	4339	11
H(7A)	7850	1727	2761	13
H(7AB)	8874	2767	1884	13
H(8)	6975	1911	443	15
H(9A)	6320	4464	-453	15
H(9AB)	7941	4431	-91	15
H(10A)	4715	2813	906	17
H(10B)	5306	1759	2167	17
H(11A)	8429	7099	4249	12
H(11B)	7855	8166	2991	12
H(12)	6158	7987	4682	14
H(13A)	5341	8191	2340	17
H(13B)	4286	7157	3190	17
H(14A)	6757	5439	5597	14
H(14B)	5155	5449	5145	14
H(15A)	7883	7735	7005	24
H(15B)	8685	7231	8402	24
H(15C)	7384	6224	7846	24

Table S6 Hydrogen bonds for (S,S)-1,2-diaminodiamantane (Å and °).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)Cl(2)#1	0.864(13)	2.303(13)	3.1438(4)	164.5(13)
N(1)-H(1A)O(1)	0.963(10)	1.937(10)	2.8517(6)	157.8(9)
N(1)-H(1B)Cl(1)	0.908(11)	2.228(11)	3.1258(4)	169.8(9)
N(1)-H(1C)Cl(1)#2	0.835(10)	2.480(10)	3.1864(4)	143.0(10)
N(2)-H(2A)Cl(2)	0.858(10)	2.262(10)	3.1172(4)	173.8(10)
N(2)-H(2B)Cl(1)#2	0.893(10)	2.265(10)	3.1527(4)	172.7(10)
N(2)-H(2C)Cl(2)#3	0.847(10)	2.389(10)	3.1840(4)	156.5(9)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y-1/2,-z+1 #2 -x+2,y+1/2,-z+1 #3 -x+2,y-1/2,-z

Crystallographic data for (S,S)-1

The unit cell of (*S*,*S*)-1 was determined using 9150 reflections and the structure was solved in the hexagonal space group *P*622. The asymmetric unit contains besides heavily disordered solvent molecules one molecule of (*S*,*S*)-1. The structure was modelled with the help similarity restrains on all anisotropic atomic displacement parameters². The SQUEEZE³ method as implemented in Platon⁴ was used to include a model for the disordered solvent molecules. The obtained model was added as fab-file to the refinement using SHELXL. SQUEEZE found one independent void with disordered solvent, located at 0.0 0.0 0.0, with a volume of 2349 Å³. The equivalent of 722 electrons were identified in the void.

Table S7 Crystal data and structure refinerCCDC NoEmpirical formulaFormula weightTemperatureWavelengthCrystal systemSpace groupUnit cell dimensions	nent for (S, S) - 1 1956840 C ₁₄ H ₂₂ Cl ₂ N ₂ Pt 484.32 100(2) K 0.71073 Å Hexagonal <i>P</i> 622 a = 24.8348(11) Å b = 24.8348(11) Å c = 12.1765(5) Å	α= 90°. β= 90°.
Volume Z	6503.9(6) Å ³ 12	Y = 120 .
Density (calculated)	1.484 Mg/m ³	
Absorption coefficient F(000)	6.710 mm ⁻¹ 2784	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	0.422 x 0.418 x 0.416 mm ³ 2.343 to 27.874°. -32<=h<=32, -32<=k<=32, -16<=l<=16 580785 5199 [R(int) = 0.1440] 99.7 % Numerical	
Refinement method Data / restraints / parameters	Full-matrix least-squares 5199 / 125 / 184	on <i>F</i> ²
Goodness-of-fit on <i>F</i> ² Final R indices [I>2sigma(I)]	1.047 R1 = 0.0271, wR2 = 0.06 ⁻	18
R indices (all data)	R1 = 0.0323, wR2 = 0.0639	
Absolute structure parameter Largest diff. peak and hole	0.024(10) 1.242 and -3.050 e.Å ⁻³	

$(0,0)^{-1}$. $O(eq)$ is u	enned as one third of	the trace of the offilog		
Atom	x	у	z	U(eq)
Pt(1)	4090(1)	4129(1)	2501(1)	20(1)
CI(1)	3504(1)	4334(1)	3718(1)	31(1)
CI(2)	4006(1)	4726(1)	1141(1)	25(1)
N(1)	4625(2)	3917(2)	1536(4)	23(1)
N(2)	4155(2)	3549(2)	3590(4)	27(1)
C(1)	4640(3)	3387(3)	3225(4)	23(1)
C(2)	4593(3)	3334(3)	1973(5)	25(1)
C(3)	5123(3)	3225(3)	1533(5)	31(1)
C(4)	5022(3)	2610(3)	2035(5)	33(2)
C(5)	5072(3)	2677(3)	3299(5)	28(1)
C(6)	4546(3)	2781(3)	3698(4)	25(1)
C(7)	5280(3)	3930(3)	3555(5)	31(1)
C(8)	5793(3)	3825(3)	3135(8)	46(2)
C(9)	5747(3)	3748(3)	1872(6)	42(2)
C(10)	5697(3)	3214(3)	3650(6)	39(2)
C(11)	3965(3)	2773(3)	1625(5)	31(1)
C(12)	3894(3)	2174(3)	2096(5)	33(2)
C(13)	3917(3)	2229(3)	3383(5)	31(1)
C(14)	4406(3)	2067(3)	1693(5)	40(2)

Table S8 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for (*S*,*S*)-1. *U*(*eq*) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S9 Bond lengths (Å) and angles (\circ) for (S,S)-1.

		C(1)-C(2)	1.530(7)
Pt(1)-N(2)	2.022(5)	C(1)-C(7)	1.537(8)
Pt(1)-N(1)	2.031(4)	C(2)-C(11)	1.543(9)
Pt(1)-Cl(2)	2.3014(12)	C(2)-C(3)	1.566(8)
Pt(1)-Cl(1)	2.3057(13)	C(3)-C(9)	1.498(10)
N(1)-C(2)	1.507(8)	C(3)-C(4)	1.546(9)
N(1)-H(1A)	0.90(2)	C(3)-H(3)	1.0000
N(1)-H(1B)	0.89(3)	C(4)-C(14)	1.506(10)
N(2)-C(1)	1.514(8)	C(4)-C(5)	1.546(9)
N(2)-H(2A)	0.87(2)	C(4)-H(4)	1.0000
N(2)-H(2B)	0.89(3)	C(5)-C(10)	1.515(9)
C(1)-C(6)	1.517(8)	C(5)-C(6)	1.534(8)

C(5)-H(5)	1.0000	C(1)-N(2)-H(2A)	106(4)
C(6)-C(13)	1.525(8)	Pt(1)-N(2)-H(2A)	123(4)
C(6)-H(6)	1.0000	C(1)-N(2)-H(2B)	119(4)
C(7)-C(8)	1.513(9)	Pt(1)-N(2)-H(2B)	102(4)
C(7)-H(7A)	0.9900	H(2A)-N(2)-H(2B)	97(5)
C(7)-H(7AB)	0.9900	N(2)-C(1)-C(6)	113.8(5)
C(8)-C(10)	1.546(9)	N(2)-C(1)-C(2)	106.2(5)
C(8)-C(9)	1.548(10)	C(6)-C(1)-C(2)	109.0(5)
C(8)-H(8)	1.0000	N(2)-C(1)-C(7)	107.6(5)
C(9)-H(9A)	0.9900	C(6)-C(1)-C(7)	110.4(5)
C(9)-H(9AB)	0.9900	C(2)-C(1)-C(7)	109.7(6)
C(10)-H(10A)	0.9900	N(1)-C(2)-C(1)	107.7(5)
C(10)-H(10B)	0.9900	N(1)-C(2)-C(11)	108.4(5)
C(11)-C(12)	1.519(8)	C(1)-C(2)-C(11)	110.5(6)
C(11)-H(11A)	0.9900	N(1)-C(2)-C(3)	113.5(5)
C(11)-H(11B)	0.9900	C(1)-C(2)-C(3)	108.8(6)
C(12)-C(14)	1.506(10)	C(11)-C(2)-C(3)	107.9(5)
C(12)-C(13)	1.572(9)	C(9)-C(3)-C(4)	109.5(5)
C(12)-H(12)	1.0000	C(9)-C(3)-C(2)	110.6(5)
C(13)-H(13A)	0.9900	C(4)-C(3)-C(2)	107.5(5)
C(13)-H(13B)	0.9900	C(9)-C(3)-H(3)	109.7
C(14)-H(14A)	0.9900	C(4)-C(3)-H(3)	109.7
C(14)-H(14B)	0.9900	C(2)-C(3)-H(3)	109.7
		C(14)-C(4)-C(3)	111.5(6)
N(2)-Pt(1)-N(1)	84.25(19)	C(14)-C(4)-C(5)	111.3(6)
N(2)-Pt(1)-Cl(2)	174.86(14)	C(3)-C(4)-C(5)	108.8(6)
N(1)-Pt(1)-Cl(2)	91.88(13)	C(14)-C(4)-H(4)	108.4
N(2)-Pt(1)-Cl(1)	91.10(14)	C(3)-C(4)-H(4)	108.4
N(1)-Pt(1)-Cl(1)	175.20(13)	C(5)-C(4)-H(4)	108.4
CI(2)-Pt(1)-CI(1)	92.83(5)	C(10)-C(5)-C(6)	110.3(5)
C(2)-N(1)-Pt(1)	108.5(3)	C(10)-C(5)-C(4)	111.6(6)
C(2)-N(1)-H(1A)	115(4)	C(6)-C(5)-C(4)	107.7(5)
Pt(1)-N(1)-H(1A)	114(4)	C(10)-C(5)-H(5)	109.1
C(2)-N(1)-H(1B)	121(4)	C(6)-C(5)-H(5)	109.1
Pt(1)-N(1)-H(1B)	102(4)	C(4)-C(5)-H(5)	109.1
H(1A)-N(1)-H(1B)	95(5)	C(1)-C(6)-C(13)	112.2(5)
C(1)-N(2)-Pt(1)	110.7(3)	C(1)-C(6)-C(5)	109.0(5)

C(13)-C(6)-C(5)	110.1(5)	H(10A)-C(10)-H(10B)	108.2
C(1)-C(6)-H(6)	108.5	C(12)-C(11)-C(2)	110.5(5)
C(13)-C(6)-H(6)	108.5	C(12)-C(11)-H(11A)	109.5
C(5)-C(6)-H(6)	108.5	C(2)-C(11)-H(11A)	109.5
C(8)-C(7)-C(1)	110.6(5)	C(12)-C(11)-H(11B)	109.5
C(8)-C(7)-H(7A)	109.5	C(2)-C(11)-H(11B)	109.5
C(1)-C(7)-H(7A)	109.5	H(11A)-C(11)-H(11B)	108.1
C(8)-C(7)-H(7AB)	109.5	C(14)-C(12)-C(11)	110.8(6)
C(1)-C(7)-H(7AB)	109.5	C(14)-C(12)-C(13)	110.0(5)
H(7A)-C(7)-H(7AB)	108.1	C(11)-C(12)-C(13)	108.1(5)
C(7)-C(8)-C(10)	107.6(6)	C(14)-C(12)-H(12)	109.3
C(7)-C(8)-C(9)	110.0(6)	C(11)-C(12)-H(12)	109.3
C(10)-C(8)-C(9)	108.4(7)	C(13)-C(12)-H(12)	109.3
C(7)-C(8)-H(8)	110.3	C(6)-C(13)-C(12)	107.8(5)
C(10)-C(8)-H(8)	110.3	C(6)-C(13)-H(13A)	110.1
C(9)-C(8)-H(8)	110.3	C(12)-C(13)-H(13A)	110.1
C(3)-C(9)-C(8)	111.2(6)	C(6)-C(13)-H(13B)	110.1
C(3)-C(9)-H(9A)	109.4	C(12)-C(13)-H(13B)	110.1
C(8)-C(9)-H(9A)	109.4	H(13A)-C(13)-H(13B)	108.5
C(3)-C(9)-H(9AB)	109.4	C(12)-C(14)-C(4)	108.7(5)
C(8)-C(9)-H(9AB)	109.4	C(12)-C(14)-H(14A)	109.9
H(9A)-C(9)-H(9AB)	108.0	C(4)-C(14)-H(14A)	109.9
C(5)-C(10)-C(8)	109.7(5)	C(12)-C(14)-H(14B)	109.9
C(5)-C(10)-H(10A)	109.7	C(4)-C(14)-H(14B)	109.9
C(8)-C(10)-H(10A)	109.7	H(14A)-C(14)-H(14B)	108.3
C(5)-C(10)-H(10B)	109.7		
C(8)-C(10)-H(10B)	109.7		

Table S10 Anisotropic displacement parameters $(\mathring{A}^2 \times 10^3)$ for (S,S)-1. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$.

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U 13	U_{12}
Pt(1)	25(1)	27(1)	14(1)	0(1)	-1(1)	17(1)
CI(1)	42(1)	50(1)	16(1)	3(1)	4(1)	35(1)
CI(2)	36(1)	31(1)	17(1)	3(1)	1(1)	23(1)
N(1)	30(3)	31(3)	15(2)	5(2)	7(2)	19(2)
N(2)	35(3)	38(3)	15(2)	0(2)	-1(2)	23(2)

C(1)	33(3)	29(3)	13(2)	0(2)	-2(2)	20(3)
C(2)	30(3)	33(3)	20(3)	4(2)	3(2)	22(3)
C(3)	42(3)	39(3)	25(3)	6(3)	11(3)	30(3)
C(4)	49(4)	36(4)	28(3)	7(3)	13(3)	33(3)
C(5)	34(3)	28(3)	29(3)	5(3)	2(3)	21(3)
C(6)	31(3)	28(3)	17(3)	4(2)	1(2)	16(2)
C(7)	33(3)	26(3)	37(3)	-2(2)	-13(3)	17(3)
C(8)	17(3)	28(4)	91(6)	8(4)	-4(3)	11(3)
C(9)	43(4)	49(4)	56(5)	32(4)	21(3)	39(4)
C(10)	33(3)	35(3)	56(4)	8(3)	-6(3)	22(3)
C(11)	47(4)	29(3)	19(3)	-2(2)	-7(3)	21(3)
C(12)	42(3)	22(3)	26(3)	-6(2)	-19(3)	10(2)
C(13)	37(3)	28(3)	27(3)	4(3)	0(3)	16(3)
C(14)	71(5)	30(3)	28(3)	-2(3)	0(3)	32(3)

Table S11 Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for (S,S)-1.

Atom	x	у	Z	U(eq)
H(1A)	4550(30)	3910(30)	820(20)	28
H(1B)	4983(18)	4273(18)	1520(50)	28
H(2A)	4220(30)	3630(30)	4290(20)	33
H(2B)	3762(15)	3250(20)	3640(50)	33
H(3)	5100	3192	714	38
H(4)	5360	2536	1766	39
H(5)	5017	2283	3626	34
H(6)	4568	2817	4517	30
H(7A)	5333	4323	3248	37
H(7AB)	5306	3969	4365	37
H(8)	6209	4180	3348	55
H(9A)	5818	4139	1528	51
H(9AB)	6075	3664	1607	51
H(10A)	6033	3137	3408	47
H(10B)	5713	3249	4460	47
H(11A)	3621	2831	1890	37
H(11B)	3942	2745	814	37
H(12)	3483	1817	1868	40

H(13A)	3577	2292	3651	37
H(13B)	3867	1843	3717	37
H(14A)	4387	2026	883	47
H(14B)	4356	1677	2011	47

Table S12 Hydrogen bonds for (S,S)-1 (Å and °).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1A)Cl(2)#1	0.90(2)	2.41(3)	3.268(5)	159(5)	
N(1)-H(1B)Cl(2)#2	0.89(3)	2.54(3)	3.418(5)	171(5)	
N(2)-H(2A)Cl(1)#3	0.87(2)	2.48(3)	3.318(5)	160(6)	

Symmetry transformations used to generate equivalent atoms:

#1 y,x,-z #2 -x+1,-y+1,z #3 y,x,-z+1

References

- 1. S. Parsons, H. D. Flack and T. Wagner, *Acta Crystallogr. B*, 2013, **69**, 249-259.
- 2. P. Müller, *Crystallography Reviews*, 2009, **15**, 57-83.
- 3. A. Spek, Acta Crystallographica Section C, 2015, **71**, 9-18.
- 4. A. Spek, *Acta Crystallographica Section D*, 2009, **65**, 148-155.