Electronic Supporting Information for:

Dynamic porous coordination polymers built-up from flexible 4,4'-dithiodibenzoate and rigid N-based ligands

Najmeh Jarrah,^{a,b} Javier Troyano,^{*a} Arnau Carne,^a Inhar Imaz,^a Shahram Tangestaninejad,^b Majid Moghadam^{*b} and Daniel Maspoch^{*a,c}

^a Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193

Barcelona, Spain

^b Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

^c ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

Identification code	1
Empirical formula	C _{18.5} H _{18.5} CuN _{1.5} O _{5.5} S ₂
Formula weight	477.51
Temperature/K	100
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	9.960(5)
b/Å	10.210(5)
c/Å	12.060(5)
α/°	102.901(5)
β/°	100.793(5)
γ/°	113.618(5)
Volume/Å ³	1041.4(8)
Z	2
$\rho_{calc}g/cm^3$	1.523
μ/mm ⁻¹	1.431
F(000)	490.0
Crystal size/mm ³	$0.22\times0.15\times0.1$
Radiation	synchrotron ($\lambda = 0.82653$)
2@ range for data collection/°	5.368 to 67.692
Index ranges	$-13 \le h \le 12, -12 \le k \le 12, -16 \le l \le 16$
Reflections collected	3976
Independent reflections	$3976 [R_{int} = ?, R_{sigma} = 0.0641]$
Data/restraints/parameters	3976/1/276
Goodness-of-fit on F ²	1.055
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0710, wR_2 = 0.2099$
Final R indexes [all data]	$R_1 = 0.0753, wR_2 = 0.2146$
Largest diff. peak/hole / e Å ⁻³	1.68/-0.74

Table S1. Data collection and structure refinement for 1

Identification code	2
Empirical formula	$C_{39}H_{28,33}Cu_2N_{2,33}O_{8,33}S_4$
Formula weight	918.29
Temperature/K	100
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	10.390(6)
$b/\text{\AA}$	21.680(6)
c/Å	21.910(6)
$\alpha / ^{\circ}$	115.86(5)
β/°	103.91(5)
γ/°	93.65(5)
Volume/Å ³	4230(3)
Z	3
$\rho_{calc}g/cm^3$	1.081
μ/mm^{-1}	1.422
F(000)	1402.0
Crystal size/mm ³	$0.24 \times 0.23 \times 0.21$
Radiation	synchrotron ($\lambda = 0.82643$)
2Θ range for data collection/°	2.474 to 67.626
Index ranges	$-13 \le h \le 13, -25 \le k \le 25, -28 \le l \le 29$
Reflections collected	38580
Independent reflections	16297 [$R_{int} = 0.1310, R_{sigma} = 0.1583$]
Data/restraints/parameters	16297/46/751
Goodness-of-fit on F ²	0.940
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0973, wR_2 = 0.2659$
Final R indexes [all data]	$R_1 = 0.1629, wR_2 = 0.3106$
Largest diff. peak/hole / e Å ⁻³	0.73/-1.10

Table S2. Data collection and structure refinement for 2

Identification code	3
Empirical formula	C ₁₈ H ₁₂ NO ₄ S ₂ Cu
Formula weight	433.95
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	24.3747(7)
b/Å	13.9313(3)
c/Å	18.9465(7)
α/°	90
β/°	111.435(4)
γ/°	90
Volume/Å ³	5988.7(3)
Z	13
$\rho_{calc}g/cm^3$	1.564
µ/mm ⁻¹	1.434
F(000)	2860.0
Crystal size/mm ³	$0.02\times0.02\times0.15$
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	3.752 to 62.85
Index ranges	$-24 \le h \le 35, -20 \le k \le 19, -27 \le l \le 26$
Reflections collected	35765
Independent reflections	9032 [$R_{int} = 0.0326$, $R_{sigma} = 0.0319$]
Data/restraints/parameters	9032/0/294
Goodness-of-fit on F ²	1.069
Final R indexes [I>=2σ (I)]	$R_1 = 0.0619, wR_2 = 0.1775$
Final R indexes [all data]	$R_1 = 0.0747, wR_2 = 0.1854$
Largest diff. peak/hole / e Å ⁻³	1.64/-0.85

Table S3. Data collection and structure refinement for 3

Identification code	4
Empirical formula	$C_{34}H_{24}Cu_2N_6O_{10}S_2$
Formula weight	867.79
Temperature/K	180
Crystal system	monoclinic
Space group	$P2_{1}/m$
a/Å	8.9361(4)
b/Å	24.6960(15)
c/Å	10.4597(4)
α/°	90
β/°	110.946(4)
γ/°	90
Volume/Å ³	2155.77(19)
Z	2
$\rho_{calc}g/cm^3$	1.337
μ/mm ⁻¹	1.716
F(000)	880.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.01
Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range for data collection/°	4.17 to 50.054
Index ranges	$-10 \le h \le 9, -29 \le k \le 29, -10 \le l \le 12$
Reflections collected	3908
Independent reflections	$3908 [R_{int} = ?, R_{sigma} = 0.0277]$
Data/restraints/parameters	3908/136/281
Goodness-of-fit on F ²	1.068
Final R indexes [I>=2σ (I)]	$R_1 = 0.0880, wR_2 = 0.2652$
Final R indexes [all data]	$R_1 = 0.1039, wR_2 = 0.2797$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.54

 Table S4. Data collection and structure refinement for 4

Figure S1. XRPD patterns of as-synthesized (red) and simulated (black) compound 1.

Figure S2. XRPD patterns of as-synthesized (red) and simulated (black) compound 2.

Figure S3. XRPD patterns of as-synthesized (red) and simulated (black) compound 3.

Figure S4. XRPD patterns of as-synthesized (red) and simulated (black) compound 4.

Figure S5. TGA curves of compounds 1-4 before solvent exchange in N_2 atmosphere with a heating rate of 5 °C min⁻¹.

Compound	Proposed formula	Temperature range (°C)	% Mass loss (calc.)	Mass loss assignment
1	[Cu(4,4'-DTBA)(DMF)] _n ·0.5DMF	80-145	7.5 (7.7)	0.5 DMF
		160-220	16.3 (15.3)	1 DMF
		275	69.4	decomposition
2	[Cu(4,4´-DTBA)(py)] _n ·0.33DMF	70-275	77.9 (78.0)	py + 0.33 DMF
		275	70.5	decomposition
3	[Cu ₂ (4,4'-DTBA) ₂ (4,4'-bpy)] _n ·2DMF	40-300	13.9 (14.1)	2 DMF
		300	73.1	decomposition
4	[Cu ₂ (NO ₃) ₂ (4,4'-DTBA)(4,4'-bpy) ₂] _n	250	72.5	decomposition

Table S5.	TGA	data for	compounds	for cor	npounds 1-4
-----------	-----	----------	-----------	---------	-------------

	Cu-Cu (Å)	Cu-O (Å)	Cu-N (Å)	S-S (Å)	C-S-S (°)	C-S-S-C torsion angle (°)	Dihedral angle (°)
1 [Cu(4,4'-DTBA)(DMF)]n	2.633(13)	1.951(3) 1.964(3) 1.965(3) 1.979(3) 2.146(4)		2.033(2)	105.50(18) 105.59(19)	69.8(3)	70.1(2)
2 [Cu(4,4'-DTBA)(py)] _n	2.635(2) 2.645(2)	1.949(6) 1.954(6) 1.964(6) 1.968(6) 1.970(7) 1.978(5) 1.990(5) 1.999(6)	2.165(7) 2.173(7) 2.181(7)	2.015(5) 2.025(3) 2.036(4)	102.0(3) 103.0(4) 105.4(3) 105.5(4) 105.6(3) 105.8(3)	78.6(5) 83.6(6) 85.4(5)	75.0(4) 87.6(4) 100.0(3)
3 [Cu ₂ (4,4'-DTBA) ₂ (4,4'-bpy)] _n	2.623(6)	1.947(2) 1.956(2) 1.964(2) 2.022(2)	2.126(3) 2.135(3)	2.022(11)	104.94(11) 105.04(11)	78.0(2)	82.81(12)
4 [Cu ₂ (NO ₃) ₂ (4,4'-DTBA)(4,4'-bpy) ₂] _n		1.915(13) 2.030(2) 2.066(7) 2.102(16) 2.264(14)	2.017(6) 2.019(5)	1.374(13)	128.9(6) 129.6(6)	75.6(2)	84.6(6)
[Cu ₂ (4,4'-DTBA)(H ₂ O) ₂] _n (1D)	2.647(2)	1.958(4) 1.972(6)		2.023(2)	105.92(2)	73.64(2)	73.02(3)
[Cu ₂ (4,4'-DTBA)(H ₂ O) ₂] _n (2D)	2.609(1)	1.951(4) 1.958(4) 1.974(4) 1.983(4) 2.150(4)		2.020(2)	105.23(2) 105.98(2)	91.10(3)	78.40(3)

Table S6. Selected bond lengths and angles for compounds 1-4 and previously reported $[Cu_2(4,4'-DTBA)(H_2O)_2]_n$ coordination polymers¹

Figure S6. View of the square cavities formed in 1 showing the pore aperture dimensions.

Figure S7. XRPD patterns of the solids obtained after reacting Cu(NO₃)₂ and 4,4'-DTBA in the presence of 1-5 equivalents of pyridine, compared with simulated patterns for **1** and **2**.

Figure S8. XRPD patterns of as-synthesized (red) and simulated (black) [Cu(py)₄(NO₃)₂]·2py complex.²

Figure S9. Space filling models of non-interpenetrated **2** (left) and previously reported 2-fold interpenetrated $[Cu_2(4,4'-DTBA)(H_2O)_2]_n^1$ (right) showing the crystal packing of 2D layers in which the various colours differentiates the contiguous layers.

Figure S10. View of the square channels formed in 2 showing the pore aperture dimensions.

Figure S11. FT-IR spectra of 3' (black), 4,4'-DTBA (red) and 4,4'-bpy (blue).

	C (%)	H (%)	N (%)	S (%)
3′	50.77	2.64	3.08	14.19
$C_{19}H_{12}CuNO_4S_2$ (calcd.)	51.17	2.71	3.14	14.38

Table S7. CHNS Elemental analysis of **3**' and theoretical values for a $Cu_2(4,4'-DTBA)_2(4,4'-bpy)$ composition

Figure S12. View of the square channels formed in **3** showing the pore aperture dimensions.

Figure S13. View of the triangular pore aperture of 2D porous channels in 4 showing the pore aperture dimensions.

Figure S14. XRPD patterns of **2** after immersing in various solvents for 48 h at room temperature.

Figure S15. XRPD patterns of 3 after immersing in various solvents 48 h at room temperature.

Figure S16. Zoom of the recorded XRPD patterns of **4**' before (dried) and after immersion in water and several organic solvents in the region $6^{\circ} < 20 < 8.5^{\circ}$.

Figure S17. XRPD patterns of simulated (black) and as-synthesized (red) 1 compared to the ones obtained after heating 1 at 85 $^{\circ}$ C (blue) and 120 $^{\circ}$ C (pink) under vacuum for 24 h.

Figure S18. FT-IR spectra of **1** before (black) and after immersing in MeOH (**1**', red) and after heating 1' at 85 °C for 24 h in DMF (**1**, blue).

Figure S19. XRPD patterns of simulated (black) and as-synthesized (red) **2** compared to the ones obtained after heating **2** at 85 $^{\circ}$ C (blue) and 120 $^{\circ}$ C (pink) under vacuum for 24 h.

Figure S20. XRPD patterns of simulated (black) and as-synthesized (red) **3** compared to the ones obtained after heating **3** at 85 °C (blue) and 120 °C (pink) under vacuum for 24 h and as-synthesized **3**' (green).

Figure S21. XRPD patterns of simulated (black) and as-synthesized (red) **4** compared to the ones obtained after heating **4** at 85 °C (blue) and 120 °C (pink) under vacuum for 24 h.

Figure S22. BET surface area plot for 1'.

Figure S23. XRPD patterns of **1**' before (black) and after (red) adsorption. The sample was activated at 85 °C under vacuum for 12 h prior adsorption experiments

Figure S24. BET surface area plot for 3'.

Figure S25. XRPD patterns of **3**' before (black) and after (red) adsorption. The sample was activated at 85 °C under vacuum for 12 h prior adsorption experiments.

Figure S26. BET surface area plot for 4'.

References:

(1) O.Veselska, L. Cai, D.Podbevšek, G. Ledoux, N.Guillou, G. Pilet, A. Fateeva, A. Demessence, *Inorg. Chem.*, 2018, **57**, 2736-2743.

(2) D. V.Soldatov, G. D.Enright, J. A. Ripmeester, J. Lipkowski, E. A.Ukraintseva, *J. Supramol. Chem.*, 2001, **1**, 245-251.