Supporting information

Cu(I) Complexes Obtained via Spontaneous Reduction of Cu(II) Complexes Supported by Designed Bidentate Ligands: Bioinspired Cu(I) Based Catalysts for Aromatic Hydroxylation

Sheela Kumari,^{†,§} Sethuraman Muthuramalingam,^{‡,§} Ashish Kumar Dhara[†], U. P. Singh[†], Ramasamy Mayilmurugan^{*‡}, Kaushik Ghosh^{*†}

[†]Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee -247667, INDIA, E-mail: <u>kaushik.ghosh@cy.iitr.ac.in</u>

[‡]Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625021, INDIA, E-mail: <u>mayilmurugan.chem@mkuniversity.ac.in</u>

[§]Both authors contributed equally to this manuscript.

Table of Contents

Figure S1. IR spectrum of ligand (L^1) . **Figure S2.** IR spectrum of ligand (L^2) . **Figure S3.** IR spectrum of ligand (L^3) . **Figure S4.** IR spectrum of ligand (L^4) . **Figure S5.** IR spectrum of ligand (L^5) . **Figure S6.** IR spectrum of ligand (L^6) . **Figure S7.** IR spectrum of ligand (L^7) . Figure S8. IR spectrum of complex 1. Figure S9. IR spectrum of complex 2. Figure S10. IR spectrum of complex 3. Figure S11. IR spectrum of complex 4. Figure S12. IR spectrum of complex 5. Figure S13. IR spectrum of complex 6. Figure S14. IR spectrum of complex 6. **Figure S15.** ¹H NMR spectrum of ligand (L¹). **Figure S16.** ¹³C NMR spectrum of ligand (L^1). **Figure S17.** ¹H NMR spectrum of ligand (L²). Figure S18. ¹³C NMR spectrum of ligand (L²). **Figure S19.** ¹H NMR spectrum of ligand (L³). **Figure S20.** ¹³C NMR spectrum of ligand (L^3) . **Figure S21.** ¹H NMR spectrum of ligand (L⁴). **Figure S22.** ¹³C NMR spectrum of ligand (L^4) . **Figure S23.** ¹H NMR spectrum of ligand (L⁵). Figure S24. ¹³C NMR spectrum of ligand (L⁵). **Figure S25.** ¹H NMR spectrum of ligand (L⁶). **Figure S26.** ¹³C NMR spectrum of ligand (L^6). **Figure S27.** ¹H NMR spectrum of ligand (L^7). **Figure S28.** 13 C NMR spectrum of ligand (L⁷). **Figure S29.** UV-visible spectra of ligands (L^1-L^7) . Figure S30. UV-visible spectra of complexes (1-7). Figure S31. ¹H NMR spectrum of complex 1. Figure S32. ¹H NMR spectrum of complex 2. Figure S33. ¹H NMR spectrum of complex 3. Figure S34. ¹H NMR spectrum of complex 4. Figure S35. ¹H NMR spectrum of complex 5. Figure S36. ¹H NMR spectrum of complex 6. Figure S37. ¹H NMR spectrum of complex 7. Figure S38. HRMS spectrum of complex 1.

- Figure S39. HRMS spectrum of complex 2.
- Figure S40. HRMS spectrum of complex 3.
- Figure S41. HRMS spectrum of complex 4.
- Figure S42. HRMS spectrum of complex 5.
- Figure S43. HRMS spectrum of complex 6.
- Figure S44. HRMS spectrum of complex 7.
- Figure S45. Oxidation of ABTS during spontaneous reduction.
- **Figure S46.** GC-MS profile for the formation of phenol using catalyst **7** and in presence of nitrobenzene as an internal standard.
- **Figure S47.** (a) The plot of yield versus various concentration of complex. (b) H₂O₂ dependent on the yield of phenol.
- Figure S48. GC trace for the oxidation of toluene using catalyst 7.
- Figure S49. GC trace for the oxidation of ethylbenzene using catalyst 7.
- Figure S50. GC trace for the oxidation of cumene using catalyst 7.
- Figure S51. GC trace for the oxidation of chlorobenzene using catalyst 7.
- Figure S52. GC trace for the oxidation of nitrobenzene using catalyst 7.
- **Figure S53.** GC-MS profile for the measurement of KIE using C₆H₆ and C₆D₆ and **7** is employed as catalyst.
- Figure S54. HRMS spectrum of the formation of Cu(II)-species
- Figure S55. The electronic spectral changes for the reaction of 1 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.
- Figure S56. The electronic spectral changes for the reaction of 2 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.
- Figure S57. The electronic spectral changes for the reaction of 4 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.
- Figure S58. The electronic spectral changes for the reaction of 5 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.
- **Figure S59.** GC trace of the benzene hydroxylation reaction in the presence of CCl₄ as additive using catalyst **7**.
- Figure S60. Time depended phenol formation by 7.
- **Table S1.** NMR, IR and UV-Visible data of ligands (L^1-L^7) .
- **Table S2.** Bond parameters of complex 1.
- Table S3. Crystal data of complex 1.
- Table S4. Redox data of 1-7.
- Table S5. Optimization of benzene hydroxylation by 7.

Figure S1. IR spectrum of ligand (L^1) .

Figure S2. IR spectrum of ligand (L^2) .

Figure S3. IR spectrum of ligand (L^3) .

Figure S4. IR spectrum of ligand (L^4) .

Figure S5. IR spectrum of ligand (L^5) .

Figure S6. IR spectrum of ligand (L^6) .

Figure S7. IR spectrum of ligand (L^7) .

Figure S8. IR spectrum of complex 1.

Figure S9. IR spectrum of complex 2.

Figure S11. IR spectrum of complex 4.

Figure S12. IR spectrum of complex 5.

Figure S13. IR spectrum of complex 6.

Figure S14. IR spectrum of complex 7.

88.20 88.20 88.20 88.20 8.20 8.20 8.20 9.

Figure S15. ¹H NMR spectrum of ligand (L¹) in CDCl₃ solvent.

Figure S16. ¹³C NMR spectrum of ligand (L¹) in CDCl₃ solvent.

Figure S18. 13 C NMR spectrum of ligand (L²) in CDCl₃ solvent.

Figure S19. ¹H NMR spectrum of ligand (L^3) in CDCl₃ solvent.

Figure S20. ¹³C NMR spectrum of ligand (L³) in CDCl₃ solvent.

•

Figure S22. ¹³C NMR spectrum of ligand (L⁴) in CDCl₃ solvent.

Figure S23. ¹H NMR spectrum of ligand (L^5) in CDCl₃ solvent.

Figure S24. ¹³C NMR spectrum of ligand (L^5) in CDCl₃ solvent.

Figure S25. ¹H NMR spectrum of ligand (L⁶) in CDCl₃ solvent.

Figure S26. ¹³C NMR spectrum of ligand (L^6) in CDCl₃ solvent.

Figure S27. ¹H NMR spectrum of ligand (L^7) in CDCl₃ solvent.

Figure S28. ¹³C NMR spectrum of ligand (L^7) in CDCl₃ solvent.

Figure S29. UV-Visible spectra of ligands (L^1-L^7) .

Figure S30. UV-Visible spectra of complexes (1-7).

Figure S31. ¹H NMR spectrum of complex **1** in dimethyl sulfoxide (d⁶) solvent.

Figure S32. ¹H NMR spectrum of complex **2** in dimethyl sulfoxide (d⁶) solvent.

Figure S33. ¹H NMR spectrum of complex **3** in dimethyl sulfoxide (d⁶) solvent.

Figure S34. ¹H NMR spectrum of complex **4** in dimethyl sulfoxide (d⁶) solvent.

Figure S35. ¹H NMR spectrum of complex 5 in dimethyl sulfoxide (d⁶) solvent.

Figure S36. ¹H NMR spectrum of complex 6 in dimethyl sulfoxide (d⁶) solvent.

Figure S37. ¹H NMR spectrum of complex 7 in dimethyl sulfoxide (d⁶) solvent.

Figure S38. HRMS spectrum of complex 1.

Figure S39. HRMS spectrum of complex 2.

Figure S40. HRMS spectrum of complex 3.

Figure S41. HRMS spectrum of complex 4.

Figure S42. HRMS spectrum of complex 5.

Figure S43. HRMS spectrum of complex 6.

Figure S44. HRMS spectrum of complex 7.

Figure S45. Oxidation of ABTS during spontaneous reduction.

Figure S46. GC-MS profile for the formation of phenol using catalyst 7 and in presence of nitrobenzene as an internal standard.

Figure S47. (a) The plot of yield versus various concentration of complex. (b) H_2O_2 dependent on the yield of phenol.

Figure S48. GC trace for the oxidation of toluene using catalyst 7.

Figure S49. GC trace for the oxidation of ethylbenzene using catalyst 7.

Figure S50. GC trace for the oxidation of cumene using catalyst 7.

Figure S51. GC trace for the oxidation of chlorobenzene using catalyst 7.

Figure S52. GC trace for the oxidation of nitrobenzene using catalyst 7.

Figure S53. GC-MS profile for the measurement of KIE using C_6H_6 and C_6D_6 and 7 is employed as catalyst.

Figure S54. HRMS spectrum of the formation of Cu(II)-species.

Figure S55. The electronic spectral changes for the reaction of 1 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.

Figure S56. The electronic spectral changes for the reaction of 2 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.

Figure S57. The electronic spectral changes for the reaction of 4 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.

Figure S58. The electronic spectral changes for the reaction of 5 with 10 equivalents of H_2O_2 and 2 equivalents of Et_3N in acetonitrile at -40 °C.

Figure S59. GC trace of the benzene hydroxylation reaction in the presence of CCl₄ as additive using catalyst **7**.

Figure S60. Time depended phenol formation by **7**. Reaction condition: benzene (5 mmol), **7** (2.5 μ mol, 0.05%) and triethylamine (2.5 μ mol), hydrogen peroxide (30%) (10 mmol) in acetonitrile at 60 °C.

Ligands	¹ H NMR data (ppm)	¹³ C NMR data (ppm)	IR (KBr disk, vmax/ cm ⁻¹):	UV-Vis (Acetonitrile; $\lambda max/nm (\epsilon, M^{-1} cm^{-1}))$
L ¹	¹ H NMR (400 MHz, CDCl ₃): δ 8.19 (d, <i>J</i> = 8.0 Hz, 1H), 7.68(d, <i>J</i> = 8.0 Hz, 2H), 7.55-7.34 (m, 4H), 7.19-7.06 (m, 6H), 6.99-6.85 (m, 5H), 6.79(t, 1H).	 ¹³C NMR (100 MHz, CDCl₃): δ 165.61, 159.24, 145.33, 138.31, 136.84, 130.03, 128.51, 128.44, 128.30, 128.11, 127.85, 126.33, 116.16, 111.31. 	1576 (v _{C=N})	250(108000), 360(32000)
L ²	¹ H NMR (400 MHz, CDCl ₃): δ 8.16 (d, <i>J</i> =8.0Hz, 1H), 7.80 (d, <i>J</i> =8.0Hz, 1H), 7.66-7.61(m, 6H), 7.51 (t, 1H), 7.40- 7.29 (m, 5H), 6.82(t, 1H).	 ¹³C NMR (100 MHz, CDCl₃): δ 158.33, 147.45, 138.67, 137.56, 135.57, 130.41, 129.88, 128.63, 126.57, 115.86, 109.74. 	1583 (v _{CH=N}),	230 (124000), 327(168000)

L ³	¹ H NMR (400 MHz, CDCl ₃): δ 8.15 (s,	¹³ C NMR (100 MHz, CDCl ₃): δ	1588	235(130000),
	1H), 7.73(d, J= 8.0 Hz, 1H), 7.68-7.47	158.20, 147.56, 138.54, 137.55,	$(v_{CH=N}),$	335(164000)
	(m, 6H), 7.33-7.17 (m, 4H), 6.83-6.80	134.16, 130.45, 128.77, 128.70,		· · · ·
	(m, 2H).	127.67, 116.10, 116.08, 109.71.		
4		10		
L^4	¹ H NMR (400 MHz, CDCl ₃): δ 8.17 (d,	¹³ C NMR (100 MHz, CDCl ₃): δ	1584	238(104000),
	J=4.0, 1H), 7.79 (d, J=8.0, 1H), 7.72-	160.07, 158.41, 147.43, 138.82,	$(v_{CH=N}),$	328(176000)
	7.62 (m, 6H), 7.54 (m, 1H), 7.32 (dd,	137.51, 137.40, 130.31, 129.95,		
	J= 8.0Hz, 2H), 6.95 (d, J=8.0Hz, 2H),	128.43, 128.36, 127.87, 121.72,		
	6.83 (m, 1H), 3.89 (s, 3H).	115.51, 113.97, 109.52, 55.23.		
- 5		12		
L	¹ H NMR (400 MHz, CDCl ₃): δ 8.24 (s,	¹³ C NMR (100 MHz, CDCl ₃): δ	1589	226(80000),
	1H), 8.22-8.20(m, 3H), 7.79-7.64 (m,	157.78, 147.64, 147.15, 141.91,	$(v_{CH=N}),$	258(116000),
	6H), 7.57-7.53 (m, 1H), 7.30-7.28 (m,	138.13, 137.73, 134.16, 133.77,		390(188000)
	2H), 6.92-6.89 (m, 1H).	130.54, 129.36, 129.00, 126.70,		
		123.96, 116.93, 110.05.		
* 6			1.50.5	222(22200)
L	¹ H NMR (400 MHz, CDCl ₃): ð 8.18 (s,	13 C NMR (100 MHz, CDCl ₃): δ	1585	233(33000),
	1H), 7.64-7.52 (m, 8H), 7.31 (d,	158.24, 150.69, 147.08, 138.92,	$(v_{CH=N})$	320(64000),
	J=8.0Hz, 2H), 6.74 (d, J=8.0Hz, 3H),	137.32, 130.13, 129.93, 128.15,		352(84000)
	3.04 (s, 6H).	127.74, 123.47, 114.96, 111.84,		
		109.38, 40.11.		
т7	¹ H NMP (400 MH ₇ CDCL): δ 8.22 (d	13 C NMP (100 MHz CDCL): δ	1590	240(104000)
	I = 1 (WHX (400 (WHZ, CDC13), 0.8.22 (d, $I = 8.0 (H) 7.71.7.31(m, 0H) 7.01$	157 80 152 11 1/6 00 1/6 99	1309	240(104000),
	J=6.0, III), I.II-I.5I(III, 9II), I.0I-	137.80, 132.11, 140.99, 140.88,	(U _{CH=N})	334(182000)
	0.85 (III, 5H), 4.02 (S, 5H).	130.39, 137.80, 130.44, 129.93,		
		128.63, 127.84, 121.47, 115.49,		
		114.32, 109.62, 107.80, 55.97.		

 Table S2. Bond parameters of complex 1.

Bond dist	tances (Å)	Bond Angles (°)		
Cu(1)-N(1)	1.9760(17)	N(1)-Cu(1)-N(3)	79.99(7)	
Cu(1)-N(3)	2.0797(17)	N(6)-Cu(1)-N(4)	80.04(7)	
Cu(1)-N(4)	1.9660(17)	N(1)-Cu(1)-N(4)	143.85(7)	
Cu(1)-N(6)	2.0945(17)	N(3)-Cu(1)-N(6)	127.94(7)	
N(2)-N(3)	1.413(2)	N(5)-N(6)-Cu(1)	110.05(12)	
N(5)-N(6)	1.418(2)	N(2)-N(3)-Cu(1)	110.78(12)	

 Table S3. Crystal data of complex 1.

-	Complex 1
Empirical formula	C48 H38 Cl Cu N6 O4
Formula weight (gmol ⁻¹)	861.84
Space group	P 21/n
Temperature /K	293
λ (Å) (Mo-Kα)	0.71073
Crystal system	Monoclinic
a (Å)	12.3221(3)
b (Å)	18.2014(6)
c (Å)	18.6062(6)
α(°)	90.00
γ (°)	90.00
β(°)	97.754(3)
V (Å ³)	4134.8(2)
Z	4
$\rho_{calc}(gcm^{-3})$	1.385
Crystal size (mm)	0.23x 0.23x 0.23
F(000)	1784
Theta range for data	3.37-25.242
collection	
Index ranges	-17 < h < 17,
	-25 <k <25,<="" td=""></k>
	-25 < l < 25.
Data/restraints/parameters	10504/0/541
GOF ^a on F ²	1.016
$R1^{b}[I > 2\sigma(I)]$	0.0507
R1[all data]	0.0823
$wR2^{c}[I > 2\sigma(I)]$	0.1107
wR2 [all data]	0.1241

 ${}^{a}GOF = \left[\sum [w(F_{o}{}^{2}-F_{c}{}^{2})^{2}] / M - N \right]^{1/2} (M = \text{number of reflections}, N = \text{number of parameters refined}). {}^{b}R1 = \sum ||F_{o}|| - |F_{c}|| / \sum |F_{o}|| . {}^{c}wR2 = \left[\sum [w(F_{o}{}^{2}-F_{c}{}^{2})^{2}] / \sum [(F_{o}{}^{2})^{2}] \right]^{1/2}.$

Complex	$E_{\rm pc}\left({\rm V}\right)$	$E_{\mathrm{pa}}(\mathbf{V})$	⊿E (mV)	$E_{1/2}$
1	0.302	0.224	78	0.263
2	0.266	0.165	101	0.216
3	0.252	0.123	129	0.188
4	0.265	0.139	126	0.202
5	0.371	0.265	106	0.318
6	0.183	0.099	84	0.141
7	0.223	0.035	188	0.129

Table S4. Redox data of 1-7.

Concentration: 1×10^{-3} M in acetonitrile. Supporting electrolyte: 0.1 M TBAP; Reference electrode: Ag/Ag⁺; working electrode: Pt-sphere; Counter electrode: Pt wire; Scan rate: 100 mV s⁻¹.

Table S5. Optimization of benzene hydroxylation by 7.

S.No	[Catalyst]	Oxidant	Temp.	Conversion	Yield	Selectivity
	(mol %)	(mmol)	(°C)	(%)	(%)	(%)
1	0.025	5	RT	9.9	9.8	>99
2	0.05	5	RT	16.4	16.3	>99
3	0.05	5	60	28	27.8	>99
4	0.05	10	60	29.8	29.3	98
5	0.05	15	60	35.3	30.4	99

Reaction conditions: Benzene (0.4 mL, 5 mmol), catalytic amount of complex 7, triethylamine (2.5 μ mol), hydrogen peroxide (30%) (1.0 mL, 10 mmol) in acetonitrile at 5 hours.